1887

Abstract

The filamentous cyanobacteria of the genus are globally distributed, phenotypically complex organisms, capable of cellular differentiation and of forming symbiotic associations with a wide range of plants. To further our understanding of these processes and functions, the proteome of photoautotrophically and diazotrophically grown sp. PCC 73102 () cells was examined. Extracted proteins were separated into membrane and soluble protein fractions and analysed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). The analysis led to the identification of 82 proteins that could be divided into 12 functional categories. Significantly, 65 of these proteins have not been previously documented in the proteome. Many of the proteins identified were readily recognized as housekeeping proteins involved in carbon, nitrogen and energy metabolism, but a number of proteins related to stress, motility, secretion and post-translational modifications were also identified. Ten unclassified proteins were also detected, representing potential novel functions. These proteins were highly expressed, suggesting that they play key roles during photoautotrophic and diazotrophic growth. Nineteen of the proteins expressed under the growth conditions examined contained putative thioredoxin (Trx) targets, a motif that functions in redox regulation via redox equivalent mediators and is known to be significant in a wide range of biological processes. These observations contribute to our understanding of the complex life cycle.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29198-0
2007-02-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/608.html?itemId=/content/journal/micro/10.1099/mic.0.29198-0&mimeType=html&fmt=ahah

References

  1. Adam, Z. & Clarke, A. K. ( 2002; ). Cutting edge of chloroplast proteolysis. Trends Plant Sci 7, 451–456.[CrossRef]
    [Google Scholar]
  2. Adams, D. G. & Duggan, P. S. ( 1999; ). Heterocyst and akinete differentiation in cyanobacteria. New Phytol 144, 3–33.[CrossRef]
    [Google Scholar]
  3. Agrawal, G. K., Rakwal, R., Yonekura, M., Kubo, A. & Saji, H. ( 2002; ). Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2, 947–959.[CrossRef]
    [Google Scholar]
  4. Anantharaman, V. & Aravind, L. ( 2002; ). The PRC-barrel: a widespread, conserved domain shared by photosynthetic reaction center subunits and proteins of RNA metabolism. Genome Biol 3, research0061, 1–9.
    [Google Scholar]
  5. Argueta, C., Yuksek, K. & Summers, M. ( 2004; ). Construction and use of GFP reporter vectors for analysis of cell-type-specific gene expression in Nostoc punctiforme. J Microbiol Methods 59, 181–188.[CrossRef]
    [Google Scholar]
  6. Balmer, Y., Koller, A., del Val, G., Manieri, W., Schurmann, P. & Buchanan, B. B. ( 2003; ). Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci U S A 100, 370–375.[CrossRef]
    [Google Scholar]
  7. Balmer, Y., Venswl, W. H., Tanaka, C. K., Hurkman, W. J., Gelhaye, E., Rouhier, N., Jacquot, J. P., Manieri, W., Schurmann, P. & other authors ( 2004; ). Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci U S A 101, 2642–2647.[CrossRef]
    [Google Scholar]
  8. Berggren, K., Chernokalskaya, E., Steinberg, T. H., Kemper, C., Lopez, M. F., Diwu, Z., Haugland, R. P. & Patton, W. F. ( 2000; ). Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 21, 2509–2521.[CrossRef]
    [Google Scholar]
  9. Bernadac, A., Gavioli, M., Lazzaroni, J. C., Raina, S. & Lloubes, R. ( 1998; ). Escherichia coli tol-pal mutants form outer membrane vesicles. J Bacteriol 180, 4872–4878.
    [Google Scholar]
  10. Borthakur, D. & Haselkorn, R. ( 1989; ). Nucleotide sequence of the gene encoding the 33 kDa water oxidizing polypeptide in Anabaena sp. strain PCC 7120 and its expression in Escherichia coli. Plant Mol Biol 13, 427–439.[CrossRef]
    [Google Scholar]
  11. Bothe, H. & Neuer, G. ( 1988; ). Electron donation to nitrogenase in heterocysts. Methods Enzymol 167, 496–501.
    [Google Scholar]
  12. Buchanan, B. B. & Balmer, Y. ( 2005; ). Redox regulation: a broadening horizon. Annu Rev Plant Biol 56, 187–220.[CrossRef]
    [Google Scholar]
  13. Bukau, B. & Horwich, A. L. ( 1998; ). The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366.[CrossRef]
    [Google Scholar]
  14. Delgado, M. A., Solbiati, J. O., Chiuchiolo, M. J., Farias, R. N. & Salomon, R. A. ( 1999; ). Escherichia coli outer membrane protein TolC is involved in production of the peptide antibiotic microcin J25. J Bacteriol 181, 1968–1970.
    [Google Scholar]
  15. Dodds, K., Gudder, D. A. & Mollenhauer, D. ( 1995; ). The ecology of Nostoc. J Phycol 31, 2–18.[CrossRef]
    [Google Scholar]
  16. Ekman, M., Tollbäck, P., Klint, J. & Bergman, B. ( 2006; ). Protein expression profiles in an endosymbiotic cyanobacterium revealed by a proteomic approach. Mol Plant Microbe Interact 19, 1251–1261.[CrossRef]
    [Google Scholar]
  17. Fink, A. L. ( 1999; ). Chaperone-mediated protein folding. Physiol Rev 79, 425–449.
    [Google Scholar]
  18. Fulda, S., Huang, F., Nilsson, F., Hagemann, M. & Norling, B. ( 2000; ). Proteomics of Synechocystis sp. PCC 6803: identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur J Biochem 267, 5900–5907.[CrossRef]
    [Google Scholar]
  19. Gleason, F. K. ( 1996; ). Glucose-6-phosphate dehydrogenase from the cyanobacterium, Anabaena sp. PCC 7120: purification and kinetics of redox modulation. Arch Biochem Biophys 334, 277–283.[CrossRef]
    [Google Scholar]
  20. Guedin, S., Willery, E., Tommassen, J., Fort, E., Drobecq, H., Locht, C. & Jacob-Dubuisson, F. ( 2000; ). Novel topological features of FhaC, the outer membrane transporter involved in the secretion of the Bordetella pertussis filamentous hemagglutinin. J Biol Chem 275, 30202–30210.[CrossRef]
    [Google Scholar]
  21. Hagen, K. D. & Meeks, J. C. ( 2001; ). The unique cyanobacterial protein OpcA is an allosteric effector of glucose-6-phosphate dehydrogenase in Nostoc punctiforme ATCC 29133. J Biol Chem 276, 11477–11486.[CrossRef]
    [Google Scholar]
  22. Hunsucker, S. W., Klage, K., Slaughter, S. M., Potts, M. & Helm, R. F. ( 2004; ). A preliminary investigation of the Nostoc punctiforme proteome. Biochem Biophys Res Commun 317, 1121–1127.[CrossRef]
    [Google Scholar]
  23. Johnson, J. M. & Church, G. M. ( 1999; ). Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps. J Mol Biol 287, 695–715.[CrossRef]
    [Google Scholar]
  24. Kliebenstein, D. J., Monde, R. A. & Last, R. L. ( 1998; ). Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118, 637–650.[CrossRef]
    [Google Scholar]
  25. Klint, J., Ran, L., Rasmussen, U. & Bergman, B. ( 2006; ). Identification of developmentally regulated proteins in cyanobacterial hormogonia using a proteomic approach. Symbiosis 41, 87–95.
    [Google Scholar]
  26. Lee, J. O., Rieu, P., Arnaout, M. A. & Liddington, R. ( 1995; ). Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80, 631–638.[CrossRef]
    [Google Scholar]
  27. Lemaire, S. D., Guillon, B., Le Marechal, P., Keryer, E., Miginiac-Maslow, M. & Decottigniesv, P. ( 2004; ). New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 101, 7475–7480.[CrossRef]
    [Google Scholar]
  28. Lindahl, M. & Florencio, F. J. ( 2003; ). Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different. Proc Natl Acad Sci U S A 100, 16107–16112.[CrossRef]
    [Google Scholar]
  29. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D. & Darnell, J. ( 1999; ). Molecular Cell Biology, pp. 708–709. New York: W. H. Freeman.
  30. Marchand, C., Le Marechal, P., Meyer, Y., Miginiac-Maslow, M., Issakidis-Bourguet, E. & Decottignies, P. ( 2004; ). New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics 4, 2696–2706.[CrossRef]
    [Google Scholar]
  31. Maroda, C. L. & Valvano, M. A. ( 1993; ). Identification, expression, and DNA sequence of the GDP-mannose biosynthesis genes encoded by the O7 rfb gene cluster of strain VW187 (Escherichia coli O7 : K1). J Bacteriol 175, 148–158.
    [Google Scholar]
  32. Meeks, J. C. & Elhai, J. ( 2002; ). Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66, 94–121.[CrossRef]
    [Google Scholar]
  33. Meeks, J. C., Elhai, J., Thiel, T., Potts, M., Larimer, F., Lamerdin, J., Predki, P. & Atlas, R. ( 2001; ). An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynthesis Research 70, 85–106.[CrossRef]
    [Google Scholar]
  34. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. A. ( 1997; ). Neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8, 581–599.[CrossRef]
    [Google Scholar]
  35. Nouwens, A. S., Cordwell, S. J., Larsen, M. R., Molloy, M. P., Gillings, M., Willcox, M. D. & Walsh, B. J. ( 2000; ). Complementing genomics with proteomics: the membrane subproteome of Pseudomonas aeruginosa PAO1. Electrophoresis 21, 3797–3809.[CrossRef]
    [Google Scholar]
  36. Rai, A. N., Söderbäck, E. & Bergman, B. ( 2000; ). Cyanobacterium-plant symbioses. New Phytol 147, 449–481.[CrossRef]
    [Google Scholar]
  37. Rai, A. N., Bergman, B. & Rasmussen, U. ( 2002; ). Cyanobacterial-Plant Symbiosis. Dordrecht, the Netherlands: Kluwer.
  38. Rippka, R., Deruells, J., Waterbury, J. B., Herdman, M. & Stanier, R. ( 1979; ). Generic assignment, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111, 1–61.[CrossRef]
    [Google Scholar]
  39. Ruffolo, C. G. & Adler, B. ( 1996; ). Cloning, sequencing, expression, and protective capacity of the oma87 gene encoding the Pasteurella multocida 87-kilodalton outer membrane antigen. Infect Immun 64, 3161–3167.
    [Google Scholar]
  40. Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Blazire, G. ( 1971; ). Purification properties of unicellular blue-green algae (order Chlorococcales). Bacteriol Rev 35, 171–205.
    [Google Scholar]
  41. Summers, M. L., Wallis, J. G., Campbell, E. L. & Meeks, J. C. ( 1995; ). Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133. J Bacteriol 177, 6184–6194.
    [Google Scholar]
  42. von Heijne, G. ( 1988; ). Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta 947, 307–333.[CrossRef]
    [Google Scholar]
  43. Whittaker, C. A. & Hynes, R. O. ( 2002; ). Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13, 3369–3387.[CrossRef]
    [Google Scholar]
  44. Winkenbach, F. & Wolk, C. P. ( 1973; ). Activities of enzymes of the oxidative and the reductive pentose phosphate pathways in heterocysts of a blue-green alga. Plant Physiol 52, 480–483.[CrossRef]
    [Google Scholar]
  45. Wong, J. H., Cai, N., Balmer, Y., Tanaka, C. K., Vensel, W. H., Hurkman, W. J. & Buchanan, B. B. ( 2004; ). Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches. Phytochemistry 65, 1629–1640.[CrossRef]
    [Google Scholar]
  46. Zheng, B., Halperin, T., Hruskova-Heidingsfeldova, O., Adam, Z. & Clarke, A. K. ( 2002; ). Characterization of chloroplast Clp proteins in Arabidopsis: localization, tissue specificity and stress responses. Physiol Plant 114, 92–101.[CrossRef]
    [Google Scholar]
  47. Zhou, R. & Wolk, C. P. ( 2002; ). Identification of an akinete marker gene in Anabaena variabilis. J Bacteriol 184, 2529–2532.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29198-0
Loading
/content/journal/micro/10.1099/mic.0.29198-0
Loading

Data & Media loading...

Supplements

The amino acid sequences used to determine the number of conserved cysteines in identified putative thioredoxins targets in [ PDF] (20 kb) Multiple sequence alignments of the proteins (A) Sp31 and (B) Sp46 to the consensus sequences [ PDF] (60 kb)

PDF

The amino acid sequences used to determine the number of conserved cysteines in identified putative thioredoxins targets in [ PDF] (20 kb) Multiple sequence alignments of the proteins (A) Sp31 and (B) Sp46 to the consensus sequences [ PDF] (60 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error