1887

Abstract

A degradative pathway for taurine (2-aminoethanesulfonate) in 2.4.1 was proposed by Brüggemann . (2004) ( , 805–816) on the basis of a partial genome sequence. In the present study, 2.4.1 was found to grow exponentially with taurine as the sole source of carbon and energy for growth. When taurine was the sole source of nitrogen in succinate-salts medium, the taurine was rapidly degraded, and most of the organic nitrogen was excreted as the ammonium ion, which was then utilized for growth. Most of the enzymes involved in dissimilation, taurine dehydrogenase (TDH), sulfoacetaldehyde acetyltransferase (Xsc) and phosphate acetyltransferase (Pta), were found to be inducible, and evidence for transcription of the corresponding genes (, and ), as well as of , encoding the postulated TRAP transporter for taurine, and of , encoding the sulfate exporter, was obtained by reverse-transcription PCR. An additional branch of the pathway, observed by Novak . (2004) ( , 1881–1891) in TAU3, involves taurine : pyruvate aminotransferase (Tpa) and a presumptive ABC transporter (NsbABC). No evidence for a significant role of this pathway, or of the corresponding alanine dehydrogenase (Ald), was obtained for 2.4.1. The anaplerotic pathway needed under these conditions in 2.4.1 seems to involve malyl-CoA lyase, which was synthesized inducibly, and not malate synthase (GlcB), whose presumed gene was not transcribed under these conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29195-0
2006-11-01
2020-08-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3197.html?itemId=/content/journal/micro/10.1099/mic.0.29195-0&mimeType=html&fmt=ahah

References

  1. Abraham W.-R, Vancanneyt M, Bennasar A, Swings J, Smit J, Moore E. R. B, Strömpl C, Lünsdorf H. 2004; Woodsholea maritima gen. nov., sp. nov., a marine bacterium with a low diversity of polar lipids. Int J Syst Evol Microbiol54:1227–1234[CrossRef]
    [Google Scholar]
  2. Alber B. E, Spanheimer R, Ebenau-Jehle C, Fuchs G. 2006; Study of an alternative glyoxylate cycle for acetate assimilation by Rhodobacter sphaeroides . Mol Microbiol61:297–309[CrossRef]
    [Google Scholar]
  3. Allen J. A, Garrett M. R. 1971; Taurine in marine invertebrates. Adv Mar Biol9:205–253[CrossRef]
    [Google Scholar]
  4. Altschul S. F, Madden T. L, Zhang J, Zhang Z, Miller W, Lipman D. J, Schäffer A. A. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  5. Bergmeyer H. U, Graßl M, Walter E.-M. 1983; Phosphotransacetylase. In Methods of Enzymatic Analysis pp 295–296 Edited by Bergmeyer H. U.. Weinheim: Verlag Chemie;
    [Google Scholar]
  6. Bradford M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  7. Brüggemann C, Denger K, Cook A. M, Ruff J. 2004; Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans . Microbiology150:805–816[CrossRef]
    [Google Scholar]
  8. Cook A. M. 1987; Biodegradation of s -triazine xenobiotics. FEMS Microbiol Rev46:93–116[CrossRef]
    [Google Scholar]
  9. Cook A. M, Hütter R. 1981; s -Triazines as nitrogen sources for bacteria. J Agric Food Chem29:1135–1143[CrossRef]
    [Google Scholar]
  10. Cook A. M, Denger K. 2002; Dissimilation of the C[sub]2[/sub] sulfonates. Arch Microbiol179:1–6[CrossRef]
    [Google Scholar]
  11. Cook A. M, Denger K. 2006; Metabolism of taurine in microorganisms: a primer in molecular diversity?. Adv Exp Med Biol583:3–13
    [Google Scholar]
  12. Denger K, Laue H, Cook A. M. 1997; Anaerobic taurine oxidation: a novel reaction by a nitrate-reducing Alcaligenes sp. Microbiology143:1919–1924[CrossRef]
    [Google Scholar]
  13. Denger K, Ruff J, Rein U, Cook A. M. 2001; Sulfoacetaldehyde sulfo-lyase [EC 4.4.1.12] from Desulfonispora thiosulfatigenes : purification, properties and primary sequence. Biochem J357:581–586[CrossRef]
    [Google Scholar]
  14. Denger K, Ruff J, Schleheck D, Cook A. M. 2004a; Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source. Microbiology150:1859–1867[CrossRef]
    [Google Scholar]
  15. Denger K, Weinitschke S, Hollemeyer K, Cook A. M. 2004b; Sulfoacetate generated by Rhodopseudomonas palustris from taurine. Arch Microbiol182:254–258
    [Google Scholar]
  16. Denger K, Smits T. H. M, Cook A. M. 2006; l-Cysteate sulfo-lyase, a widespread, pyridoxal 5′-phosphate-coupled desulfonative enzyme purified from Silicibacter pomeroyi DSS-3[sup]T[/sup]. Biochem J394:657–664[CrossRef]
    [Google Scholar]
  17. Desomer J, Crespi M, Van Montagu M. 1991; Illegitimate integration of non-replicative vectors in the genome of Rhodococcus fascians upon electrotransformation as an insertional mutagenesis system. Mol Microbiol5:2115–2124[CrossRef]
    [Google Scholar]
  18. Dixon G. H, Kornberg H. L. 1959; Assay methods for key enzymes of the glyoxylate cycle. Biochem J72:3P
    [Google Scholar]
  19. Eichhorn E, Leisinger T, van der Ploeg J. R. 2000; Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems. J Bacteriol182:2687–2795[CrossRef]
    [Google Scholar]
  20. Filatova L. V, Berg I. A, Krasil'nikova E. N, Ivanovsky R. N. 2005; A study of the mechanism of acetate assimilation in purple nonsulfur bacteria lacking the glyoxylate shunt: enzymes of the citramalate cycle in Rhodobacter sphaeroides . Microbiology (English translation of Mikrobiologiia)74:270–278[CrossRef]
    [Google Scholar]
  21. Forward J. A, Behrendt M. C, Wyborn N. R, Cross R, Kelly D. J. 1997; TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. J Bacteriol179:5482–5493
    [Google Scholar]
  22. Gesellschaft Deutscher Chemiker 1996; German Standard Methods for the Laboratory Examination of Water, Waste Water and Sludge Weinheim: Verlag Chemie;
    [Google Scholar]
  23. Gorzynska A. K, Denger K, Cook A. M, Smits T. H. M. 2006; Inducible transcription of genes involved in taurine uptake and dissimilation by Silicibacter pomeroyi DSS-3[sup]T[/sup]. Arch Microbiol185:402–606[CrossRef]
    [Google Scholar]
  24. Hagen K. D, Nelson D. C. 1997; Use of reduced sulfur compounds by Beggiatoa spp.: enzymology and physiology of marine and freshwater strains in homogeneous and gradient cultures. Appl Environ Microbiol63:3957–3964
    [Google Scholar]
  25. Huxtable R. J. 1992; Physiological actions of taurine. Physiol Rev72:101–163
    [Google Scholar]
  26. Innis M. A, Gelfand D. H, Sninsky J. J, White T. J. 1990; PCR Protocols. A Guide to Methods and Applications San Diego: Academic Press;
    [Google Scholar]
  27. Kappler U, Dahl C. 2001; Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol Lett203:1–9[CrossRef]
    [Google Scholar]
  28. Kappler U, Bennett B, Rethmeier J, Schwarz G, Deutzmann R, McEwan A. G, Dahl C. 2000; Sulfite : cytochrome c oxidoreductase from Thiobacillus novellus . Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family. J Biol Chem275:13202–13212[CrossRef]
    [Google Scholar]
  29. Kertesz M. A. 2000; Riding the sulfur cycle – metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev24:135–175
    [Google Scholar]
  30. Khademi S, Remis J, Robles-Colmenares Y, Miercke L. J, Stroud R. M, O'Connell J. III. 2004; Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Science305:1587–1594[CrossRef]
    [Google Scholar]
  31. Kinhikar A. G, Vargas D, Li H, Mahaffey S. B, Hinds L, Belisle J. T, Laal S. 2006; Mycobacterium tuberculosis malate synthase is a laminin-binding adhesin. Mol Microbiol60:999–1013[CrossRef]
    [Google Scholar]
  32. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  33. Laue H, Cook A. M. 2000a; Purification, properties and primary structure of alanine dehydrogenase involved in taurine metabolism in the anaerobe Bilophila wadsworthia . Arch Microbiol174:162–167[CrossRef]
    [Google Scholar]
  34. Laue H, Cook A. M. 2000b; Biochemical and molecular characterization of taurine : pyruvate aminotransferase from the anaerobe Bilophila wadsworthia . Eur J Biochem267:6841–6848[CrossRef]
    [Google Scholar]
  35. Laue H, Smits T. H. M, Schumacher U, Claros M, Hartemink R, Cook A. M. 2006; Identification of Bilophila wadsworthia in enrichment cultures by specific PCR which targets the taurine : pyruvate aminotransferase gene. FEMS Microbiol Lett261:74–79[CrossRef]
    [Google Scholar]
  36. Lawrence S. H, Luther K. B, Schindelin H, Ferry J. G. 2006; Structural and functional studies suggest a catalytic mechanism for the phosphotransacetylase from Methanosarcina thermophila . J Bacteriol188:1143–1154[CrossRef]
    [Google Scholar]
  37. Lie T. L, Leadbetter J. R, Leadbetter E. R. 1998; Metabolism of sulfonic acids and other organosulfur compounds by sulfate-reducing bacteria. Geomicrobiol J15:135–149[CrossRef]
    [Google Scholar]
  38. Masepohl B, Klipp W, Führer F. 2001; Genetic analysis of a Rhodobacter capsulatus gene region involved in utilization of taurine as a sulfur source. FEMS Microbiol Lett205:105–111[CrossRef]
    [Google Scholar]
  39. Mayer J, Denger K, Smits T. H. M, Hollemeyer K, Groth U, Cook A. M. 2006; N -Acetyltaurine dissimilated via taurine by Delftia acidovorans NAT. Arch Microbiol186:61–67[CrossRef]
    [Google Scholar]
  40. Meister M, Saum S, Alber B. E, Fuchs G. 2005; l-Malyl-coenzyme A/ β -methylmalyl-coenzyme A lyase is involved in acetate assimilation of the isocitrate lyase-negative bacterium Rhodobacter capsulatus . J Bacteriol187:1415–1425[CrossRef]
    [Google Scholar]
  41. Novak R. T, Gritzer R. F, Leadbetter E. R, Godchaux W. 2004; Phototrophic utilization of taurine by the purple nonsulfur bacteria Rhodopseudomonas palustris and Rhodobacter sphaeroides . Microbiology150:1881–1891[CrossRef]
    [Google Scholar]
  42. Reichenbecher W, Kelly D. P, Murrell J. C. 1999; Desulfonation of propanesulfonic acid by Comamonas acidovorans strain P53: evidence for an alkanesulfonate sulfonatase and an atypical sulfite dehydrogenase. Arch Microbiol172:387–392[CrossRef]
    [Google Scholar]
  43. Rein U, Gueta R, Denger K, Ruff J, Hollemeyer K, Cook A. M. 2005; Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology151:737–747[CrossRef]
    [Google Scholar]
  44. Ruff J, Denger K, Cook A. M. 2003; Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J369:275–285[CrossRef]
    [Google Scholar]
  45. Sambrook J, Fritsch E. F, Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Schiffer A, Fritz G, Kroneck P. M, Ermler U. 2006; Reaction mechanism of the iron-sulfur flavoenzyme adenosine-5′-phosphosulfate reductase based on the structural characterization of different enzymatic states. Biochemistry45:2960–2967[CrossRef]
    [Google Scholar]
  47. Sistrom W. R. 1962; The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides . J Gen Microbiol28:607–616[CrossRef]
    [Google Scholar]
  48. Sörbo B. 1987; Sulfate: turbidimetric and nephelometric methods. Methods Enzymol143:3–6
    [Google Scholar]
  49. Styp von Rekowski K, Denger K, Cook A. M. 2005; Isethionate as a product from taurine during nitrogen-limited growth of Klebsiella oxytoca Tau-N1. Arch Microbiol183:325–330[CrossRef]
    [Google Scholar]
  50. Thurnheer T, Cook A. M, Leisinger T, Köhler T. 1986; Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. J Gen Microbiol132:1215–1220
    [Google Scholar]
  51. Vollrath F, Fairbrother W. J, Williams R. J. P, Tillinghast E. K, Bernstein D. T, Gallagher K. S, Townley M. A. 1990; Compounds in the droplets of the orb spider's viscid spiral. Nature345:526–528[CrossRef]
    [Google Scholar]
  52. Weinitschke S, Denger K, Cook A. M, Styp von Rekowski K. 2005; Sulfoacetaldehyde is excreted quantitatively by Acinetobacter calcoaceticus SW1 during growth with taurine as sole source of nitrogen. Microbiology151:1285–1290[CrossRef]
    [Google Scholar]
  53. Weinitschke S, Denger K, Smits T. H. M, Hollemeyer K, Cook A. M. 2006; The sulfonated osmolyte N -methyltaurine is dissimilated by Alcaligenes faecalis and by Paracoccus versutus with release of methylamine. Microbiology152:1179–1186[CrossRef]
    [Google Scholar]
  54. Weisburg W. G, Barns S. M, Pelletier D. A, Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703
    [Google Scholar]
  55. Yin M, Palmer H. R, Fyfe-Johnson A. L, Bedford J. J, Smith R. A, Yancey P. H. 2000; Hypotaurine, N -methyltaurine, taurine, and glycine betaine as dominant osmolytes of vestimentiferan tubeworms from hydrothermal vents and cold seeps. Physiol Biochem Zool73:629–637[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29195-0
Loading
/content/journal/micro/10.1099/mic.0.29195-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error