1887

Abstract

subsp. , the causative agent of fish pasteurellosis, produces a siderophore which is distinct from that produced by subsp. . Using suppression subtractive hybridization, a subsp. -specific DNA region of 35 kb was identified in strain DI21, and 11 genes were defined: , , , , , , , , , and . The sequence of the predicted proteins encoded by these genes showed significant similarity with the proteins responsible for the synthesis and transport of the siderophore yersiniabactin, encoded within the high-pathogenicity island (HPI). Southern hybridization demonstrated that this gene cluster is exclusive to some European subsp. isolates. Database searches revealed that a similar gene cluster is present in SS9 and RC385. An gene (encoding a putative non-ribosomal peptide synthetase) insertional mutant (CS31) was impaired for growth under iron-limiting conditions and unable to produce siderophores, and showed an approximately 100-fold decrease in degree of virulence for fish. The subsp. DI21 strain, but not CS31, promoted the growth of a mutant. Furthermore, a yersiniabactin-producing strain as well as purified yersiniabactin were able to cross-feed strains DI21 and CS31, suggesting that the subsp. siderophore might be functionally and structurally related to yersiniabactin. The differential occurrence among strains, and the low sequence similarity to siderophore synthesis genes described in other members of the , suggest that this genetic system might have been acquired by horizontal transfer in subsp. , and might have a common evolutionary origin with the HPI.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29190-0
2006-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3327.html?itemId=/content/journal/micro/10.1099/mic.0.29190-0&mimeType=html&fmt=ahah

References

  1. Alice A. F, Lopez C. S, Crosa J. H. 2005; Plasmid- and chromosome-encoded redundant and specific functions are involved in biosynthesis of the siderophore anguibactin in Vibrio anguillarum 775: a case of chance and necessity?. J Bacteriol 187:2209–2214 [CrossRef]
    [Google Scholar]
  2. Anisimov R, Brem D, Heesemann J, Rakin A. 2005; Molecular mechanism of YbtA-mediated transcriptional regulation of divergent overlapping promoters ybtA and irp6 of Yersinia enterocolitica . FEMS Microbiol Lett 250:27–32 [CrossRef]
    [Google Scholar]
  3. Bach S, Carniel E, de Almeida A. 2000; The Yersinia high-pathogenicity island is present in different members of the family Enterobacteriaceae . FEMS Microbiol Lett 183:289–294 [CrossRef]
    [Google Scholar]
  4. Bearden S. W, Fetherston J. D, Perry R. D. 1997; Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis . Infect Immun 65:1659–1668
    [Google Scholar]
  5. Braun V. 2005; Bacterial iron transport related to virulence. Contrib Microbiol 12:210–233
    [Google Scholar]
  6. Brem D, Pelludat C, Rakin A, Jacobi C. A, Heesemann J. 2001; Functional analysis of yersiniabactin transport genes of Yersinia enterocolitica . Microbiology 147:1115–1127
    [Google Scholar]
  7. Buchrieser C, Brosch R, Bach S, Guiyoule A, Carniel E. 1998; The high-pathogenicity island of Yersinia pseudotuberculosis can be inserted into any of the three chromosomal asn tRNA genes. Mol Microbiol 30:965–978 [CrossRef]
    [Google Scholar]
  8. Bultreys A, Gheysen I, de Hoffmann E. 2006; Yersiniabactin production by Pseudomonas syringae and Escherichia coli , and description of a second yersiniabactin locus evolutionary group. Appl Environ Microbiol 72:3814–3825 [CrossRef]
    [Google Scholar]
  9. Carniel E, Guiyoule A, Guilvout I, Mercereau-Puijalon O. 1992; Molecular cloning, iron-regulation and mutagenesis of the irp2 gene encoding HMWP2, a protein specific for the highly pathogenic Yersinia . Mol Microbiol 6:379–388 [CrossRef]
    [Google Scholar]
  10. Carniel E, Guilvout I, Prentice M. 1996; Characterization of a large chromosomal “high-pathogenicity island” in biotype 1B Yersinia enterocolitica . J Bacteriol 178:6743–6751
    [Google Scholar]
  11. Chen C. Y, Wu K. M, Chang Y. C. 12 other authors 2003; Comparative genome analysis of Vibrio vulnificus , a marine pathogen. Genome Res 13:2577–2587 [CrossRef]
    [Google Scholar]
  12. Colonna B, Nicoletti M, Visca P, Casalino M, Valenti P, Maimone F. 1985; Composite IS 1 elements encoding hydroxamate-mediated iron uptake in F1 me plasmids from epidemic Salmonella spp. J Bacteriol 162:307–316
    [Google Scholar]
  13. Crosa J. H. 1989; Genetics and molecular biology of siderophore mediated iron transport in bacteria. Microbiol Rev 53:517–530
    [Google Scholar]
  14. Crosa J. H, Walsh C. T. 2002; Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microb Mol Biol Rev 66:223–249 [CrossRef]
    [Google Scholar]
  15. Do Vale A, Silva M. T, Nascimento D. S, Reis-Rodrigues P, Costa-Ramos C, Ellis A. E, Azevedo J. E, dos Santos N. M. S. 2005; AIP56, a novel plasmid-encoded virulence factor of Photobacterium damselae subsp. piscicida with apoptogenic activity against sea bass macrophages and neutrophils. Mol Microbiol 58:1025–1038 [CrossRef]
    [Google Scholar]
  16. Drechsel H, Stephan H, Lotz R, Haag H, Zahner H, Hantke K, Jung G. 1995; Structural elucidation of yersiniabactin, a siderophore from highly virulent Yersinia strains. Liebigs Ann 10:1727–1733
    [Google Scholar]
  17. Escolar L, Pérez-Martín J, de Lorenzo V. 1999; Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229
    [Google Scholar]
  18. Faraldo-Gómez J., Sanson M. S. P. 2003; Acquisition of siderophores in gram-negative bacteria. Nat Rev 4:105–116 [CrossRef]
    [Google Scholar]
  19. Farrell D. H, Mikesell P, Actis L. A, Crosa J. H. 1990; A regulatory gene, angR , of the iron uptake system of Vibrio anguillarum : similarity with phage P22 cro and regulation by iron. Gene 86:45–51 [CrossRef]
    [Google Scholar]
  20. Fernández L, Márquez I., Guijarro J. A. 2004; Identification of specific in vivo-induced (ivi) genes in Yersinia ruckeri and analysis of ruckerbactin, a catecholate siderophore iron acquisition system. Appl Environ Microbiol 70:5199–5207 [CrossRef]
    [Google Scholar]
  21. Fetherston J. D, Bearden S. W, Perry R. D. 1996; YbtA, an AraC-type regulator of the Yersinia pestis pesticin/yersiniabactin receptor. Mol Microbiol 22:315–325 [CrossRef]
    [Google Scholar]
  22. Fetherston J. D, Bertolino V. J, Perry R. D. 1999; YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis . Mol Microbiol 32:289–299 [CrossRef]
    [Google Scholar]
  23. Fouz B, Biosca E. G, Amaro C. 1997; High affinity iron-uptake systems in Vibrio damsela : role in the acquisition of iron from transferrin. J Appl Microbiol 82:157–167 [CrossRef]
    [Google Scholar]
  24. Gallegos M. T, Schleif R, Bairoch A, Hofmann K, Ramos J. L. 1997; AraC/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61:393–410
    [Google Scholar]
  25. Gauthier G, Lafay B, Ruimy R, Breittmayer V, Nicolas J. L, Gauthier M, Christen R. 1995; Small-subunit rRNA sequences and whole DNA relatedness concur for the reassignment of Pasteurella piscicida (Snieszko et al.) Janssen and Surgalla to the genus Photobacterium as Photobacterium damselae subsp. piscicida comb. nov. Int J Syst Bacteriol 45:139–144 [CrossRef]
    [Google Scholar]
  26. Gehring A. M, DeMoll E, Fetherston J. D, Mori I, Mayhew G. F, Blattner F, Walsh C, Perry R. 1998; Iron acquisition in plague: molecular logic in the biosynthesis of yersiniabactin by Yersinia pestis . Chem Biol 5:573–586 [CrossRef]
    [Google Scholar]
  27. Genco C. A, Dixon D. W. 2001; Emerging strategies in microbial haem capture. Mol Microbiol 39:1–11 [CrossRef]
    [Google Scholar]
  28. Geoffroy V. A, Fetherston J. D, Perry R. D. 2000; Yersinia pestis YbtU and YbtT are involved in synthesis of the siderophore yersiniabactin but have different effects on regulation. Infect Immun 68:4452–4461 [CrossRef]
    [Google Scholar]
  29. Guilvout I, Mercereau-Puijalon O, Bonnefoy S, Pugsley A. P, Carniel E. 1993; High-molecular-weight protein 2 of Yersinia enterocolitica is homologous to AngR of Vibrio anguillarum and belongs to a family of proteins involved in nonribosomal peptide synthesis. J Bacteriol 175:5488–5504
    [Google Scholar]
  30. Heidelberg J. F, Eisen J. A, Nelson W. C. 29 other authors 2000; DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae . Nature 406:477–483 [CrossRef]
    [Google Scholar]
  31. Janssen W. A, Surgalla M. J. 1968; Morphology, physiology, and serology of a Pasteurella species pathogenic for white perch (Roccus americanus ). J Bacteriol 96:1606–1610
    [Google Scholar]
  32. Juiz-Río S, Osorio C. R, Lemos M. L. 2004; Identification and characterisation of the fur genes in Photobacterium damselae ssp. piscicida and ssp. damselae . Dis Aquat Organ 58:151–156 [CrossRef]
    [Google Scholar]
  33. Juiz-Río S, Osorio C. R, Lemos M. L. 2005a; Heme uptake genes in human and fish isolates of Photobacterium damselae : existence of hutA pseudogenes. Arch Microbiol 183:347–358 [CrossRef]
    [Google Scholar]
  34. Juiz-Río S, Osorio C. R, Lemos M. L, de Lorenzo V. 2005b; Subtractive hybridization reveals a high genetic diversity in the fish pathogen Photobacterium damselae subsp. piscicida : evidence of a SXT-like element. Microbiology 151:2659–2669 [CrossRef]
    [Google Scholar]
  35. Lesic B, Carniel E. 2005; Horizontal transfer of the high-pathogenicity island of Yersinia pseudotuberculosis . J Bacteriol 187:3352–3358 [CrossRef]
    [Google Scholar]
  36. Macke T. J, Ecker D. J, Gutell R. R, Gautheret D, Case D. A, Sampath R. 2001; RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29:4724–4735 [CrossRef]
    [Google Scholar]
  37. Magariños B, Santos Y, Romalde J. L, Rivas C, Barja J. L, Toranzo A. E. 1992; Pathogenic activities of the live cells and extracellular products of the fish pathogen Pasteurella piscicida . J Gen Microbiol 138:2491–2498 [CrossRef]
    [Google Scholar]
  38. Magariños B, Romalde J. L, Lemos M. L, Barja J. L, Toranzo A. E. 1994; Iron uptake by Pasteurella piscicida and its role in pathogenicity for fish. Appl Environ Microbiol 60:2990–2998
    [Google Scholar]
  39. Magariños B, Toranzo A. E, Romalde J. L. 1996a; Phenotypic and pathobiological characteristics of Pasteurella piscicida . Annu Rev Fish Dis 6:41–64 [CrossRef]
    [Google Scholar]
  40. Magariños B, Bonet R, Romalde J. L, Congregado F, Toranzo A. E, Martínez M. J. 1996b; Influence of the capsular layer on the virulence of Pasteurella piscicida for fish. Microb Pathog 21:289–297 [CrossRef]
    [Google Scholar]
  41. Magariños B, Toranzo A. E, Barja J. L, Romalde J. L. 2000; Existence of two geographically-linked clonal lineages in the bacterial fish pathogen Photobacterium damselae subsp. piscicida evidenced by random amplified polymorphic DNA analysis. Epidemiol Infect 125:213–219 [CrossRef]
    [Google Scholar]
  42. Makino K, Oshima K, Kurokawa K. 14 other authors 2003; Genome sequence of Vibrio parahaemolyticus : a pathogenic mechanism distinct from that of V. cholerae . Lancet 361:743–749 [CrossRef]
    [Google Scholar]
  43. Michel L, Jagdeep S, Nguyen-Ngoc T, Reimmann C, González N. 2005; PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Mol Microbiol 58:495–509 [CrossRef]
    [Google Scholar]
  44. Miller D. A, Luo L, Hillson N, Keating T. A, Walsh C. T. 2002; Yersiniabactin synthetase: a four-protein assembly line producing the nonribosomal peptide/polyketide hybrid siderophore of Yersinia pestis . Chem Biol 9:333–344 [CrossRef]
    [Google Scholar]
  45. Mouriño S, Osorio C. R, Lemos M. L. 2004; Characterization of the heme uptake cluster genes in the fish pathogen Vibrio anguillarum . J Bacteriol 186:6159–6167 [CrossRef]
    [Google Scholar]
  46. Olsson C, Olofsson T, Molin G, Ahrné S. 2003; The Yersinia HPI is present in Serratia liquefaciens isolated from meat. Lett Appl Microbiol 37:275–280 [CrossRef]
    [Google Scholar]
  47. Osorio C. R, Lemos M. L. 2002; Haem iron acquisition mechanisms in Vibrionaceae. In Recent Research Developments in Microbiology vol. 6 pp  419–436 Edited by Pandalai S. G. Research Signpost; Kerala, India;
    [Google Scholar]
  48. Osorio C. R, Romalde J. L, Barja J. L, Toranzo A. E. 2000; Presence of phospholipase-D (dly) gene coding for damselysin production is not a pre-requisite for pathogenicity in Photobacterium damselae subsp. damselae . Microb Pathog 28:119–126 [CrossRef]
    [Google Scholar]
  49. Osorio C. R, Lemos M. L, Braun V. 2004; Identification of Fur regulated genes in the bacterial fish pathogen Photobacterium damselae subsp. piscicida using the Fur titration assay. Biometals 17:725–733 [CrossRef]
    [Google Scholar]
  50. Pelludat C, Rakin A, Jacobi C. A, Schubert S, Heesemann J. 1998; The yersiniabactin biosynthetic gene cluster of Yersinia enterocolitica : organization and siderophore-dependent regulation. J Bacteriol 180:538–546
    [Google Scholar]
  51. Pelludat C, Brem D, Heesemann J. 2003; Irp9, encoded by the high-pathogenicity island of Yersinia enterocolitica , is able to convert chorismate into salicylate, the precursor of the siderophore yersiniabactin. J Bacteriol 185:5648–5653 [CrossRef]
    [Google Scholar]
  52. Rakin A, Saken E, Harmsen D, Heesemann J. 1994; The pesticin receptor of Yersinia enterocolitica : a novel virulence factor with dual function. Mol Microbiol 13:253–263 [CrossRef]
    [Google Scholar]
  53. Rakin A, Noelting C, Schubert S, Heesemann J. 1999; Common and specific characteristics of the high-pathogenicity island of Yersinia enterocolitica . Infect Immun 67:5265–5274
    [Google Scholar]
  54. Ratledge C, Dover L. G. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941 [CrossRef]
    [Google Scholar]
  55. Ruby E. G, Urbanowski M, Campbell J. 13 other authors 2005; Complete genome sequence of Vibrio fischeri : a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci U S A 102:3004–3009 [CrossRef]
    [Google Scholar]
  56. Sambrook J, Russell D. W. 2001 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  57. Schubert S, Rakin A, Karch H, Carniel E, Heesemann J. 1998; Prevalence of the “high pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun 66:480–485
    [Google Scholar]
  58. Schubert S, Picard B, Gouriou S, Heesemann J, Denamur E. 2002; Yersinia high-pathogenicity island contributes to virulence in Escherichia coli causing extraintestinal infections. Infect Immun 70:5335–5337 [CrossRef]
    [Google Scholar]
  59. Schwarzer D, Finking R, Marahiel M. A. 2003; Nonribosomal peptides: from genes to products. Nat Prod Rep 20:275–287 [CrossRef]
    [Google Scholar]
  60. Schwyn B, Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 [CrossRef]
    [Google Scholar]
  61. Stachelhaus T, Mootz H. D, Marahiel M. A. 1999; The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505 [CrossRef]
    [Google Scholar]
  62. Stork M, Di Lorenzo M, Osorio C. R, Lemos M. L, Crosa J. H, Mouriño S. 2004; Two tonB systems function in iron transport in Vibrio anguillarum , but only one is essential for virulence. Infect Immun 72:7326–7329 [CrossRef]
    [Google Scholar]
  63. Tanabe T, Takata N, Naka A, Moon Y. H, Nakao H, Inoue Y, Narimatsu S, Yamamoto S. 2005; Identification of an AraC-like regulator gene required for induction of the 78-kDa ferrioxamine B receptor in Vibrio vulnificus . FEMS Microbiol Lett 249:309–314 [CrossRef]
    [Google Scholar]
  64. Toranzo A. E, Barja J. L, Potter S. A, Colwell R. R, Hetrick F. M, Crosa J. H. 1983; Molecular factors associated with virulence of marine vibrios isolated from striped bass in Chesapeake Bay. Infect Immun 39:1220–1227
    [Google Scholar]
  65. Vezzi A, Campanaro S, D'Angelo M. 10 other authors 2005; Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461 [CrossRef]
    [Google Scholar]
  66. Vokes S. A, Reeves S. A, Torres A. G, Payne S. M. 1999; The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island. Mol Microbiol 33:63–73 [CrossRef]
    [Google Scholar]
  67. Wang R. F, Kushner S. R. 1991; Construction of versatile low-copy-number vectors for cloning, sequencing, and gene expression in Escherichia coli . Gene 100:195–199 [CrossRef]
    [Google Scholar]
  68. Williams P. H. 1979; Novel iron uptake system specified by ColV plasmids: an important component in the virulence of invasive strains of Escherichia coli . Infect Immun 26:925–932
    [Google Scholar]
  69. Winstanley C. 2002; Spot the difference: applications of subtractive hybridisation to the study of bacterial pathogens. J Med Microbiol 51:459–467
    [Google Scholar]
  70. Wyckoff E. E, Stoebner J. A, Reed K. E, Payne S. M. 1997; Cloning of a Vibrio cholerae vibriobactin gene cluster: identification of genes required for early steps in siderophore biosynthesis. J Bacteriol 179:7055–7062
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29190-0
Loading
/content/journal/micro/10.1099/mic.0.29190-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error