1887

Abstract

The gene was previously annotated to encode a hypothetical protein in sp. strain PCC 6803. When a positively phototactic strain of this cyanobacterium was insertionally inactivated at , the mutants were not transformable, and appeared to aggregate as a result of increased bundling of type IV pili. Also, these mutants were rendered non-phototactic compared to the wild-type. Quantitative real-time PCR revealed a 3.5-fold increase in transcript levels in the mutant over wild-type cells, while there were no changes in the level of and transcripts. Supernatant from mutant liquid culture contained more PilA1 protein, confirmed by mass spectrometric analysis, compared to the wild-type cells, which corresponded to the increase in transcripts. The increase in PilA1 subunits may contribute to the bundling morphology of pili that was observed, which in turn may act to retard DNA uptake by hindering the retraction of pili. This gene is therefore proposed to be designated , as it possesses a phosphoribosyltransferase domain, a distinguishing feature of other ComF proteins of naturally transformable heterotrophic bacteria. This report is the second of a competence-related gene from sp. strain PCC 6803, the product of which does not show homology to other well-studied type IV pili proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29189-0
2006-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3623.html?itemId=/content/journal/micro/10.1099/mic.0.29189-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Barten, R. & Lill, H. ( 1995; ). DNA-uptake in the naturally competent cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 129, 83–88.
    [Google Scholar]
  3. Bashor, C., Denu, J. M., Brennan, R. G. & Ullman, B. ( 2002; ). Kinetic mechanism of adenine phosphoribosyltransferase from Leishmania donovani. Biochemistry 41, 4020–4031.[CrossRef]
    [Google Scholar]
  4. Bhaya, D. ( 2004; ). Light matters: phototaxis and signal transduction in unicellular cyanobacteria. Mol Microbiol 53, 745–754.[CrossRef]
    [Google Scholar]
  5. Bhaya, D., Bianco, N. R., Bryant, D. & Grossman, A. ( 2000; ). Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803. Mol Microbiol 37, 941–951.[CrossRef]
    [Google Scholar]
  6. Bhaya, D., Takahashi, A. & Grossman, A. R. ( 2001; ). Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803. Proc Natl Acad Sci U S A 98, 7540–7545.[CrossRef]
    [Google Scholar]
  7. Craig, S. P., III & Eakin, A. E. ( 2000; ). Purine phosphoribosyltransferases. J Biol Chem 275, 20231–20234.[CrossRef]
    [Google Scholar]
  8. Dubnau, D. ( 1991; ). Genetic competence in Bacillus subtilis. Microbiol Rev 55, 395–424.
    [Google Scholar]
  9. Fiedler, B., Borner, T. & Wilde, A. ( 2005; ). Phototaxis in the cyanobacterium Synechocystis sp. PCC 6803: role of different photoreceptors. Photochem Photobiol 81, 1481–1488.[CrossRef]
    [Google Scholar]
  10. Fussenegger, M., Rudel, T., Barten, R., Ryll, R. & Meyer, T. F. ( 1997; ). Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae – a review. Gene 192, 125–134.[CrossRef]
    [Google Scholar]
  11. Gatlin, C. L., Kleemann, G. R., Hays, L. G., Link, A. J. & Yates, J. R. ( 1998; ). Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. Anal Biochem 263, 93–101.[CrossRef]
    [Google Scholar]
  12. Graupner, S., Frey, V., Hashemi, R., Lorenz, M. G., Brandes, G. & Wackernagel, W. ( 2000; ). Type IV pilus genes pilA and pilC of Pseudomonas stutzeri are required for natural genetic transformation, and pilA can be replaced by corresponding genes from nontransformable species. J Bacteriol 182, 2184–2190.[CrossRef]
    [Google Scholar]
  13. Grigorieva, G. & Shestakov, S. ( 1982; ). Transformation in the cyanobacterium Synechocystis sp. 6803. FEMS Microbiol Lett 13, 367–370.[CrossRef]
    [Google Scholar]
  14. Hamoen, L. W., Venema, G. & Kuipers, O. P. ( 2003; ). Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149, 9–17.[CrossRef]
    [Google Scholar]
  15. Heroux, A., White, E. L., Ross, L. J., Davis, R. L. & Borhani, D. W. ( 1999; ). Crystal structure of Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase with XMP, pyrophosphate, and two Mg2+ ions bound: insights into the catalytic mechanism. Biochemistry 38, 14495–14506.[CrossRef]
    [Google Scholar]
  16. Hubschmann, T., Yamamoto, H., Gieler, T., Murata, N. & Borner, T. ( 2005; ). Red and far-red light alter the transcript profile in the cyanobacterium Synechocystis sp. PCC 6803: impact of cyanobacterial phytochromes. FEBS Lett 579, 1613–1618.[CrossRef]
    [Google Scholar]
  17. Larson, T. G. & Goodgal, S. H. ( 1991; ). Sequence and transcriptional regulation of com101A, a locus required for genetic transformation in Haemophilus influenzae. J Bacteriol 173, 4683–4691.
    [Google Scholar]
  18. Larson, T. G. & Goodgal, S. H. ( 1992; ). Donor DNA processing is blocked by a mutation in the com101A locus of Haemophilus influenzae. J Bacteriol 174, 3392–3394.
    [Google Scholar]
  19. Larson, T. G., Roszczyk, E. & Goodgal, S. H. ( 1991; ). Molecular cloning of two linked loci that increase the transformability of transformation-deficient mutants of Haemophilus influenzae. J Bacteriol 173, 4675–4682.
    [Google Scholar]
  20. Lee, M. S., Dougherty, B. A., Madeo, A. C. & Morrison, D. A. ( 1999; ). Construction and analysis of a library for random insertional mutagenesis in Streptococcus pneumoniae: use for recovery of mutants defective in genetic transformation and for identification of essential genes. Appl Environ Microbiol 65, 1883–1890.
    [Google Scholar]
  21. Londono-Vallejo, J. A. & Dubnau, D. ( 1993; ). comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol Microbiol 9, 119–131.[CrossRef]
    [Google Scholar]
  22. Macfadyen, L. P., Dorocicz, I. R., Reizer, J., Saier, M. H., Jr & Redfield, R. J. ( 1996; ). Regulation of competence development and sugar utilization in Haemophilus influenzae Rd by a phosphoenolpyruvate: fructose phosphotransferase system. Mol Microbiol 21, 941–952.[CrossRef]
    [Google Scholar]
  23. Nakamura, Y., Kaneko, T., Hirosawa, M., Miyajima, N. & Tabata, S. ( 1998; ). CyanoBase, a www database containing the complete nucleotide sequence of the genome of Synechocystis PCC6803. Nucleic Acids Res 26, 63–67.[CrossRef]
    [Google Scholar]
  24. Nakasugi, K. & Neilan, B. A. ( 2005; ). Identification of pilus-like structures and genes in Microcystis aeruginosa PCC7806. Appl Environ Microbiol 71, 7621–7625.[CrossRef]
    [Google Scholar]
  25. Nakasugi, K. & Neilan, B. A. ( 2006; ). Gene transfer in cyanobacteria. In Recent Developments in Nucleic Acids Research, vol. 2. Edited by S. Pandalai. Kerala: Transworld Research Network, pp. 83–114.
  26. Okamoto, S. & Ohmori, M. ( 2002; ). The cyanobacterial PilT protein responsible for cell motility and transformation hydrolyzes ATP. Plant Cell Physiol 43, 1127–1136.[CrossRef]
    [Google Scholar]
  27. Palmen, R. & Hellingwerf, K. J. ( 1997; ). Uptake and processing of DNA by Acinetobacter calcoaceticus – a review. Gene 192, 179–190.[CrossRef]
    [Google Scholar]
  28. Petersen, F. C., Tao, L. & Scheie, A. A. ( 2005; ). DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation. J Bacteriol 187, 4392–4400.[CrossRef]
    [Google Scholar]
  29. Piazza, F., Tortosa, P. & Dubnau, D. ( 1999; ). Mutational analysis and membrane topology of ComP, a quorum-sensing histidine kinase of Bacillus subtilis controlling competence development. J Bacteriol 181, 4540–4548.
    [Google Scholar]
  30. Possot, O. M. & Pugsley, A. P. ( 1997; ). The conserved tetracysteine motif in the general secretory pathway component PulE is required for efficient pullulanase secretion. Gene 192, 45–50.[CrossRef]
    [Google Scholar]
  31. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. ( 1979; ). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111, 1–61.[CrossRef]
    [Google Scholar]
  32. Schmidt-Goff, C. M. & Federspiel, N. A. ( 1993; ). In vivo and in vitro footprinting of a light-regulated promoter in the cyanobacterium Fremyella diplosiphon. J Bacteriol 175, 1806–1813.
    [Google Scholar]
  33. Schumacher, M. A., Bashor, C. J., Song, M. H., Otsu, K., Zhu, S., Parry, R. J., Ullman, B. & Brennan, R. G. ( 2002; ). The structural mechanism of GTP stabilized oligomerization and catalytic activation of the Toxoplasma gondii uracil phosphoribosyltransferase. Proc Natl Acad Sci U S A 99, 78–83.[CrossRef]
    [Google Scholar]
  34. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. ( 1996; ). Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68, 850–858.[CrossRef]
    [Google Scholar]
  35. Sinderen, D. V., Luttinger, A., Kong, L., Dubnau, D., Venema, G. & Hamoen, L. ( 1995; ). comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol Microbiol 15, 455–462.[CrossRef]
    [Google Scholar]
  36. Sinha, S. C., Krahn, J., Shin, B. S., Tomchick, D. R., Zalkin, H. & Smith, J. L. ( 2003; ). The purine repressor of Bacillus subtilis: a novel combination of domains adapted for transcription regulation. J Bacteriol 185, 4087–4098.[CrossRef]
    [Google Scholar]
  37. Solomon, J. M. & Grossman, A. D. ( 1996; ). Who's competent and when: regulation of natural genetic competence in bacteria. Trends Genet 12, 150–155.[CrossRef]
    [Google Scholar]
  38. Steunou, A.-S., Bhaya, D., Bateson, M. M., Melendrez, M. C., Ward, D. M., Brecht, E., Peters, J. W., Kühl, M. & Grossman, A. R. ( 2006; ). In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proc Natl Acad Sci U S A 103, 2398–2403.[CrossRef]
    [Google Scholar]
  39. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  40. Tomb, J.-F., El-Hajj, H. & Smith, H. O. ( 1991; ). Nucleotide sequence of a cluster of genes involved in the transformation of Haemophilus influenzae Rd. Gene 104, 1–10.[CrossRef]
    [Google Scholar]
  41. Wall, D. & Kaiser, D. ( 1999; ). Type IV pili and cell motility. Mol Microbiol 32, 1–10.[CrossRef]
    [Google Scholar]
  42. Wang, Y. & Taylor, D. E. ( 1990; ). Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene 94, 23–28.[CrossRef]
    [Google Scholar]
  43. Whelan, J. A., Russell, N. B. & Whelan, M. A. ( 2003; ). A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods 278, 261–269.[CrossRef]
    [Google Scholar]
  44. Williams, J. G. K. ( 1988; ). Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol 167, 766–778.
    [Google Scholar]
  45. Yoshihara, S., Suzuki, F., Fujita, H., Xiao, X. G. & Ikeuchi, M. ( 2000; ). Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 41, 1299–1304.[CrossRef]
    [Google Scholar]
  46. Yoshihara, S., Geng, X. X., Okamoto, S., Yura, K., Murata, T., Go, M., Ohmori, M. & Ikeuchi, M. ( 2001; ). Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 42, 63–73.[CrossRef]
    [Google Scholar]
  47. Yoshimura, H., Yanagisawa, S., Kanehisa, M. & Ohmori, M. ( 2002; ). Screening for the target gene of cyanobacterial cAMP receptor protein SYCRP1. Mol Microbiol 43, 843–853.[CrossRef]
    [Google Scholar]
  48. Yura, K., Toh, H. & Go, M. ( 1999; ). Putative mechanism of natural transformation as deduced from genome data. DNA Res 6, 75–82.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29189-0
Loading
/content/journal/micro/10.1099/mic.0.29189-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error