1887

Abstract

Heterologous expression of bacterial virulence factors in is a feasible approach to study their molecular function. The authors have previously reported that the SigD protein, a phosphatidylinositol phosphatase involved in invasion of the host cell, inhibits yeast growth, presumably by depleting an essential pool of phosphatidylinositol 4,5-phosphate, and also that a catalytically inactive version, SigD, was able to arrest growth by a different mechanism that involved disruption of the actin cytoskeleton. This paper describes marked differences between the phenotypes elicited by expression of SigD and SigD in yeast. First, expression of SigD caused accumulation of large unbudded cells and loss of septin organization, while SigD expression caused none of these effects. Second, growth inhibition by SigD was mediated by a cell cycle arrest in G2 dependent on the Swe1 morphogenetic checkpoint, but SigD-induced growth inhibition was cell cycle independent. And third, SigD caused strong activation of the yeast MAP kinase Slt2, whereas SigD rather inactivated another MAP kinase, Kss1. In a screen for suppressors of SigD-induced growth arrest by overexpression of a yeast cDNA library, the Cdc42 GTPase was isolated. Furthermore, SigD was co-purified with Cdc42 from yeast lysates. It is concluded that the SigD protein deprived of its phosphatase activity is able to disrupt yeast morphogenesis by interfering with Cdc42 function, opening the possibility that the SigD N-terminal region might directly modulate small GTPases from the host during infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29186-0
2006-11-01
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3437.html?itemId=/content/journal/micro/10.1099/mic.0.29186-0&mimeType=html&fmt=ahah

References

  1. Aili M, Telepnev M, Hallberg B, Wolf-Watz H, Rosqvist R. 2003; In vitro GAP activity towards RhoA, Rac1 and Cdc42 is not a prerequisite for YopE induced HeLa cell cytotoxicity. Microb Pathog34:297–308[CrossRef]
    [Google Scholar]
  2. Alemán A, Rodriguez-Escudero I, Mallo G. V, Cid V. J, Molina M, Rotger R. 2005; The amino-terminal non-catalytic region of Salmonella typhimurium SigD affects actin organization in yeast and mammalian cells. Cell Microbiol7:1432–1446[CrossRef]
    [Google Scholar]
  3. Audhya A, Loewith R, Parsons A. B, Gao L, Tabuchi M, Zhou H, Boone C, Hall M. N, Emr S. D. 2004; Genome-wide lethality screen identifies new PI4,5P(2) effectors that regulate the actin cytoskeleton. EMBO J23:3747–3757[CrossRef]
    [Google Scholar]
  4. Barral Y, Parra M, Bidlingmaier S, Snyder M. 1999; Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev13:176–187[CrossRef]
    [Google Scholar]
  5. Bertelsen L. S, Paesold G, Marcus S. L, Finlay B. B, Eckmann L, Barrett K. E. 2004; Modulation of chloride secretory responses and barrier function of intestinal epithelial cells by the Salmonella effector protein SigD. Am J Cell Physiol287:939–948[CrossRef]
    [Google Scholar]
  6. Blomberg N, Baraldi E, Nilges M, Saraste M. 1999; The PH superfold: a structural scaffold for multiple functions. Trends Biochem Sci24:441–445[CrossRef]
    [Google Scholar]
  7. Cabezas A, Stenmark H, Patín K. 2006; Cloning and subcellular localization of a human phosphatidylinositol 3-phosphate 5-kinase, PIKfyve/Fab1. Gene371:34–41[CrossRef]
    [Google Scholar]
  8. Chen L. M, Hobbie S, Galán J. E. 1996; Requirement of Cdc42 for Salmonella typhimurium -induced cytoskeletal reorganization and nuclear responses in cultured cells. Science274:2115–2118[CrossRef]
    [Google Scholar]
  9. Cid V. J, Adamiková L, Sánchez M, Molina M, Nombela C. 2001a; Cell cycle control of septin ring dynamics in the budding yeast. Microbiology147:1437–1450
    [Google Scholar]
  10. Cid V. J, Shulewitz M. J, McDonald K. L, Thorner J. 2001b; Dynamic localization of the Swe1 regulator Hsl7 during the Saccharomyces cerevisiae cell cycle. Mol Biol Cell12:1645–1669[CrossRef]
    [Google Scholar]
  11. Cook J. G, Bardwell L, Thorner J. 1997; Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature390:85–88[CrossRef]
    [Google Scholar]
  12. De Nobel H, Ruiz C, Morris W, Brul S, Molina M, Klis F. M, Martín H. 2000; Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance. Microbiology146:2121–2132
    [Google Scholar]
  13. Dukes J. D, Lee H, Hagen R, Reaves B. J, Layton A. N, Galyov E. E, Whitley P. 2006; The secreted Salmonella dublin phosphoinositide phosphatase, SopB, localizes to PtdIns(3)P-containing endosomes and perturbs normal endosome to lysosome trafficking. Biochem J395:239–247[CrossRef]
    [Google Scholar]
  14. Feng Y, Wente S. R, Majerus P. W. 2001; Overexpression of the inositol phosphatase SopB in human 293 cells stimulates cellular chloride influx and inhibits nuclear mRNA export. Proc Natl Acad Sci U S A98:875–879[CrossRef]
    [Google Scholar]
  15. Fu Y, Galan J. E. 1999; A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature401:293–297[CrossRef]
    [Google Scholar]
  16. Gary J. D, Wurmser A. E, Bonangelino C. J, Weisman L. S, Emr S. D. 1998; Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol143:65–79[CrossRef]
    [Google Scholar]
  17. Gladfelter A. S, Pringle J. R, Lew D. J. 2001; The septin cortex at the yeast mother-bud neck. Curr Opin Microbiol4:681–689[CrossRef]
    [Google Scholar]
  18. Gladfelter A. S, Bose I, Zyla T. R, Bardes E. S, Lew D. J. 2002; Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p. J Cell Biol156:315–326[CrossRef]
    [Google Scholar]
  19. Guan K. L, Dixon J. E. 1991; Eukaryotic proteins expressed in Escherichia coli : an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S -transferase. Anal Biochem192:262–267[CrossRef]
    [Google Scholar]
  20. Harder K. W, Owen P, Wong L. K, Aebersold R, Clark-Lewis I, Jirik F. R. 1994; Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase beta (HPTP beta) using synthetic phosphopeptides. Biochem J298:395–401
    [Google Scholar]
  21. Hardt W. D, Chen L. M, Schuebel K. E, Bustelo X. R, Galán J. E. 1998; S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell29:815–826
    [Google Scholar]
  22. Harrison J. C, Bardes E. S, Ohya Y, Lew D. J. 2001; A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint. Nat Cell Biol3:417–420[CrossRef]
    [Google Scholar]
  23. Hernández L. D, Hueffer K, Wenk M. R, Galán J. E. 2004; Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science304:1805–1807[CrossRef]
    [Google Scholar]
  24. Hong K. M, Miller V. L. 1998; Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE . J Bacteriol180:1793–1802
    [Google Scholar]
  25. Johnson D. I, Pringle J. R. 1990; Molecular characterization of CDC42 , a Saccharomyces cerevisiae gene involved in the development of cell polarity. J Cell Biol111:143–152[CrossRef]
    [Google Scholar]
  26. Knodler L. A, Finlay B. B, Steele-Mortimer O. 2005; The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J Biol Chem280:9058–9064[CrossRef]
    [Google Scholar]
  27. Lee B. N, Elion E. A. 1999; The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signalling components. Proc Natl Acad Sci U S A96:12679–12684[CrossRef]
    [Google Scholar]
  28. Lee K. S, Hines L. K, Levin D. E. 1993; A pair of functionally redundant yeast genes (PPZ1 and PPZ2) encoding type 1-related protein phosphatases function within the PKC1-mediated pathway. Mol Cell Biol13:5843–5853
    [Google Scholar]
  29. Lesser C. F, Miller S. I. 2001; Expression of microbial virulence proteins in Saccharomyces cerevisiae models mammalian infection. EMBO J20:1840–1849[CrossRef]
    [Google Scholar]
  30. Liu H, Krizek J, Bretscher A. 1992; Construction of a GAL1 -regulated yeast cDNA expression library and its application to the identification of genes whose overexpression causes lethality in yeast. Genetics132:665–673
    [Google Scholar]
  31. Marcus S. L, Wenk M. R, Steele-Mortimer O, Finlay B. B. 2001; A synaptojanin-homologous region of Salmonella typhimurium SigD is essential for inositol phosphatase activity and Akt activation. FEBS Lett13:201–207
    [Google Scholar]
  32. Marcus S. L, Knodler L. A, Finlay B. B. 2002; Salmonella enterica serovar Typhimurium effector SigD/SopB is membrane-associated and ubiquitinated inside host cells. Cell Microbiol4:435–446[CrossRef]
    [Google Scholar]
  33. Martín H, Arroyo J, Sánchez M, Molina M, Nombela C. 1993; Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37 °C. Mol Gen Genet241:177–184
    [Google Scholar]
  34. Martín H, Rodríguez-Pachón J. M, Ruiz C, Nombela C, Molina M. 2000; Regulatory mechanisms for modulation of signalling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae . J Biol Chem275:1511–1519[CrossRef]
    [Google Scholar]
  35. McMillan J. N, Longtine M. S, Sia R. A, Theesfeld C. L, Bardes E. S, Pringle J. R, Lew D. J. 1999; The morphogenesis checkpoint in Saccharomyces cerevisiae : cell cycle control of Swe1p degradation by Hsl1p and Hsl7p. Mol Cell Biol19:6929–6939
    [Google Scholar]
  36. Mitchell D. A, Marshall T. K, Deschenes R. J. 1993; Vectors for the inducible overexpression of glutathione S -transferase fusion proteins in yeast. Yeast9:715–722[CrossRef]
    [Google Scholar]
  37. Mösch H. U, Roberts R. L, Fink G. R. 1996; Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae . Proc Natl Acad Sci U S A93:5352–5356[CrossRef]
    [Google Scholar]
  38. Murli S, Watson R. O, Galán J. E. 2001; Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell Microbiol3:795–810[CrossRef]
    [Google Scholar]
  39. Niebuhr K, Jouihri N, Allaoui A, Gounon P, Sansonetti P. J, Parsot C. 2000; IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri , is chaperoned by IpgE and implicated in entry focus formation. Mol Microbiol38:8–19[CrossRef]
    [Google Scholar]
  40. Norris F. A, Wilson M. P, Wallis T. S, Galyov E. E, Majerus P. W. 1998; SopB, a protein required for virulence of Salmonella dublin , is an inositol phosphate phosphatase. Proc Natl Acad Sci U S A95:14057–14059[CrossRef]
    [Google Scholar]
  41. Pardon P, Popoff M. Y, Coynault C, Marly J, Miras I. 1986; Virulence-associated plasmids of Salmonella serotype Typhimurium in experimental murine infection. Ann Inst Pasteur Microbiol173B:47–60
    [Google Scholar]
  42. Patel J. C, Galán J. E. 2005; Manipulation of the host actin cytoskeleton by Salmonella – all in the name of entry. Curr Opin Microbiol8:10–15[CrossRef]
    [Google Scholar]
  43. Pruyne D, Bretscher A. 2000; Polarization of cell growth in yeast. J Cell Sci113:571–585
    [Google Scholar]
  44. Rabin S. D, Hauser A. R. 2003; Pseudomonas aeruginosa ExoU, a toxin transported by the type III secretion system, kills Saccharomyces cerevisiae . Infect Immun71:4144–4150[CrossRef]
    [Google Scholar]
  45. Rodríguez-Escudero I, Hardwidge P. R, Nombela C, Cid V. J, Finlay B. B, Molina M. 2005a; Enteropathogenic Escherichia coli type III effectors alter cytoskeletal function and signalling in Saccharomyces cerevisiae . Microbiology151:2933–2945[CrossRef]
    [Google Scholar]
  46. Rodríguez-Escudero I, Roelants F. M, Thorner J, Nombela C, Molina M, Cid V. J. 2005b; Reconstitution of the mammalian PI3K/PTEN/Akt pathway in yeast. Biochem J390:613–623[CrossRef]
    [Google Scholar]
  47. Rodríguez-Pachón J. M, Martín H, North G, Rotger R, Nombela C, Molina M. 2002; A novel connection between the yeast Cdc42 GTPase and the Slt2-mediated cell integrity pathway identified through the effect of secreted Salmonella GTPase modulators. J Biol Chem26:27094–27102
    [Google Scholar]
  48. Ruiz C, Escribano V, Morgado E, Molina M, Mazon M. J. 2003; Cell-type-dependent repression of yeast a-specific genes requires Itc1p, a subunit of the Isw2p-Itc1p chromatin remodelling complex. Microbiology149:341–351[CrossRef]
    [Google Scholar]
  49. Sato H, Frank D. W, Hillard C. J.9 other authors 2003; The mechanism of action of the Pseudomonas aeruginosa -encoded type III cytotoxin, ExoU. EMBO J22:2959–2969[CrossRef]
    [Google Scholar]
  50. Shinjo K, Koland J. G, Hart M. J, Narasimhan V, Johnson D. I, Evans T, Cerione R. A. 1990; Molecular cloning of the gene for the human placental GTP-binding protein Gp(G25K): identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42. Proc Natl Acad Sci U S A87:9853–9857[CrossRef]
    [Google Scholar]
  51. Shulewitz M. J, Inouye C. J, Thorner J. W. 1999; Hsl7 localizes to a septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae . Mol Cell Biol19:7123–7137
    [Google Scholar]
  52. Sia R. A, Herald H. A, Lew D. J. 1996; Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast. Mol Biol Cell7:1657–1666[CrossRef]
    [Google Scholar]
  53. Sia R. A, Bardes E. S, Lew D. J. 1998; Control of Swe1p degradation by the morphogenesis checkpoint. EMBO J17:6678–6688[CrossRef]
    [Google Scholar]
  54. Skrzypek E, Myers-Morales T, Whiteheart S. W, Straley S. C. 2003; Application of a Saccharomyces cerevisiae model to study requirements for trafficking of Yersinia pestis YopM in eukaryotic cells. Infect Immun71:937–947[CrossRef]
    [Google Scholar]
  55. Smith G. R, Givan S. A, Cullen P, Sprague G. F. Jr. 2002; GTPase-activating proteins for Cdc42. Eukaryot Cell1:469–480[CrossRef]
    [Google Scholar]
  56. Steele-Mortimer O, Knodler L. A, Marcus S. L, Scheid M. P, Goh B, Pfeifer C. G, Duronio V, Finlay B. B. 2000; Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector SigD. J Biol Chem275:37718–37724[CrossRef]
    [Google Scholar]
  57. Terebiznik M. R, Vieira O. V, Marcus S. L, Slade A, Yip C. M, Trimble W. S, Meyer T, Finlay B. B, Grinstein S. 2002; Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella . Nat Cell Biol4:766–773[CrossRef]
    [Google Scholar]
  58. Trosky J. E, Mukherjee S, Burdette D. L, Roberts M, McCarter L, Siegel R. M, Orth K. 2004; Inhibition of MAPK signalling pathways by VopA from Vibrio parahaemolyticus . J Biol Chem279:51953–51957[CrossRef]
    [Google Scholar]
  59. Valdivia R. H. 2004; Modeling the function of bacterial virulence factors in Saccharomyces cerevisiae . Eukaryot Cell3:827–834[CrossRef]
    [Google Scholar]
  60. Von Pawel-Rammingen U, Telepnev M. V, Schmidt G, Aktories K, Wolf-Watz H, Rosqvist R. 2000; GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol36:737–748
    [Google Scholar]
  61. Yoon S, Liu Z, Eyobo Y, Orth K. 2003; Yersinia effector YopJ inhibits yeast MAPK signalling pathways by an evolutionarily conserved mechanism. J Biol Chem278:2131–2135[CrossRef]
    [Google Scholar]
  62. Yu J. W, Mendrola J. M, Audhya A, Singh S, Keleti D, DeWald D. B, Murray D, Emr S. D, Lemmon M. A. 2004; Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol Cell13:677–688[CrossRef]
    [Google Scholar]
  63. Zaharik M. L, Gruenheid S, Perrin A. J, Finlay B. B. 2002; Delivery of dangerous goods: Type III secretion in enteric pathogens. Int J Med Microbiol291:593–603[CrossRef]
    [Google Scholar]
  64. Zhou Z, Gartner A, Cade R, Ammerer G, Errede B. 1993; Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases. Mol Cell Biol13:2069–2080
    [Google Scholar]
  65. Zhou D, Chen L. M, Shears S. B, Hernández L, Galán J. E. 2001; A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol39:248–259[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29186-0
Loading
/content/journal/micro/10.1099/mic.0.29186-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error