Functional analysis of 11 putative essential genes in Free

Abstract

Systematic inactivation of genes has previously revealed that 271 are indispensable for growth. In the present study, 11 of these (, , , , , , , , , and ) were identified as genes encoding proteins of unknown function. By analysing the effects of protein depletion, and examining the subcellular localization of these proteins, a start has been made in elucidating their functions. It was found that four of these genes (, , and ) were not required for viability. Analysis of the localization of YkqC suggests that it co-localizes with ribosomes, and it is proposed that it is involved in processing either rRNA or specific mRNAs when they are associated with the ribosome. The results suggest that other novel essential proteins may be involved in lipid synthesis and control of cell wall synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29152-0
2006-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/2895.html?itemId=/content/journal/micro/10.1099/mic.0.29152-0&mimeType=html&fmt=ahah

References

  1. Akerley B. J, Rubin E. J, Novick V. L, Amaya K, Judson N, Mekalanos J. J. 2002; A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae . Proc Natl Acad Sci U S A 99:966–971 [CrossRef]
    [Google Scholar]
  2. Allali-Hassani A, Campbell T. L, Ho A, Schertzer J. W, Brown E. D. 2004; Probing the active site of YjeE: a vital Escherichia coli protein of unknown function. Biochem J 384:577–584 [CrossRef]
    [Google Scholar]
  3. Allsop A. E. 1998; New antibiotic discovery, novel screens, novel targets and impact of microbial genomics. Curr Opin Microbiol 1:530–534 [CrossRef]
    [Google Scholar]
  4. Anagnostopoulos C, Spizizen J. 1961; Requirements for transformation in Bacillus subtilis . J Bacteriol 81:741–746
    [Google Scholar]
  5. Aravind L, Koonin E. V. 1998; The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci 23:469–472 [CrossRef]
    [Google Scholar]
  6. Arigoni F, Talabot F, Peitsch M. 7 other authors 1998; A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 16:851–856 [CrossRef]
    [Google Scholar]
  7. Butland G, Peregrin-Alvarez J. M, Li J. 11 other authors 2005; Interaction network containing conserved and essential protein complexes in Escherichia coli . Nature 433:531–537 [CrossRef]
    [Google Scholar]
  8. Campbell T, Daigle D. M, Brown E. D. 2005; Characterization of the Bacillus subtilis GTPase YloQ and its role in ribosome function. Biochem J 389:843–852 [CrossRef]
    [Google Scholar]
  9. Condon C. 2003; RNA processing and degradation in Bacillus subtilis . Microbiol Mol Biol Rev 67:157–174 [CrossRef]
    [Google Scholar]
  10. Even S, Pellegrini O, Zig L, Labas V, Vinh J, Brechemmier-Baey D, Putzer H. 2005; Ribonucleases J1 and J2: two novel endoribonucleases in B. subtilis with functional homology to E. coli RNase E. Nucleic Acids Res 33:2141–2152 [CrossRef]
    [Google Scholar]
  11. Fabret C, Ehrlich S. D, Noirot P. 2002; A new mutation delivery system for genome-scale approaches in Bacillus subtilis . Mol Microbiol 46:25–36 [CrossRef]
    [Google Scholar]
  12. Formstone A, Errington J. 2005; A magnesium-dependent mreB null mutant: implications for the role of mreB in Bacillus subtilis . Mol Microbiol 55:1646–1657 [CrossRef]
    [Google Scholar]
  13. Forsyth R. A, Haselbaeck R. J, Ohlsen K. L. 20 other authors 2002; A genome-wide strategy for the identification of essential genes in Staphylococcus aureus . Mol Microbiol 43:1387–1400 [CrossRef]
    [Google Scholar]
  14. Freiberg C, Wieland B, Spaltmann F, Ehlert K, Brotz H, Labischinski H. 2001; Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria. J Mol Microbiol Biotechnol 3:483–489
    [Google Scholar]
  15. Glaser P, Sharpe M. E, Raether B, Perego M, Ohlsen K, Errington J. 1997; Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev 11:1160–1168 [CrossRef]
    [Google Scholar]
  16. Hutchison C. A, Peterson S. N, Gill S. R, Cline R. T, White O, Fraser C. M, Smith H. O, Venter J. C. 1999; Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:2165–2169 [CrossRef]
    [Google Scholar]
  17. Ji Y, Zhang B, Van Horn S. F, Warren P, Woodnutt G, Burnham M. K. R, Rosenberg M. 2001; Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293:2266–2269 [CrossRef]
    [Google Scholar]
  18. Kobayashi K, Ehrlich S. D, Albertini A. 96 other authors 2003; Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100:4678–4683
    [Google Scholar]
  19. Leaver M, Errington J. 2005; Roles for MreC and MreD proteins in helical growth of the cylindrical cell wall in Bacillus subtilis . Mol Microbiol 57:1196–1209 [CrossRef]
    [Google Scholar]
  20. Lemon K. P, Grossman A. D. 1998; Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282:1430–1431 [CrossRef]
    [Google Scholar]
  21. Lewis P. J, Errington J. 1997; Direct evidence for active chromosome segregation of oriC regions of the Bacillus subtilis chromosome and co-localization with the Spo0J partitioning protein. Mol Microbiol 25:945–954 [CrossRef]
    [Google Scholar]
  22. Lewis P. J, Marston A. L. 1999; GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis . Gene 227:101–109 [CrossRef]
    [Google Scholar]
  23. Lewis P. J, Thaker S. D, Errington J. 2000; Compartmentalization of transcription and translation in Bacillus subtilis . EMBO J 19:710–718 [CrossRef]
    [Google Scholar]
  24. Ostheimer G. J, Barkan A, Matthews B. W. 2002; Crystal structure of E. coli YhbY: a representative of a novel class of RNA binding proteins. Structure 10:1593–1601 [CrossRef]
    [Google Scholar]
  25. Pellegrini O, Nezzar J, Marchfelder A, Putzer H, Condon C. 2003; Endonucleolytic processing of CCA-less tRNA precursors by RNase Z in Bacillus subtilis . EMBO J 22:4534–4543 [CrossRef]
    [Google Scholar]
  26. Quisel J. D, Burkholder W. F, Grossman A. D. 2001; In vivo effects of sporulation kinases on mutant Spo0A proteins in Bacillus subtilis . J Bacteriol 183:6573–6578 [CrossRef]
    [Google Scholar]
  27. Rothfield L, Taghbalout A, Shih Y. L. 2005; Spatial control of bacterial division-site placement. Nat Rev Microbiol 3:959–968 [CrossRef]
    [Google Scholar]
  28. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Sharpe M. E, Hauser P. M, Sharpe R. G, Errington J. 1998; Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J Bacteriol 180:547–555
    [Google Scholar]
  30. Soma A, Ikeuchi Y, Kanemasa S. 7 other authors 2003; An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. Mol Cell 12:689–698 [CrossRef]
    [Google Scholar]
  31. Sterlini J. M, Mandelstam J. 1969; Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 113:29–37
    [Google Scholar]
  32. Teplova M, Tereshko V, Sanishvili R, Joachimiak A, Bushueva T, Anderson W. F, Egli M. 2000; The structure of the yrdC gene product from Escherichia coli reveals a new fold and suggests a role in RNA binding. Protein Sci 9:2557–2566 [CrossRef]
    [Google Scholar]
  33. Teplyakov A, Obmolova G, Tordova M, Thanki N, Bonander N, Eisenstein E, Howard A. J, Gilliland G. L. 2002; Crystal structure of the YjeE protein from Haemophilus influenzae : a putative ATPase involved in cell wall synthesis. Proteins 48:220–226 [CrossRef]
    [Google Scholar]
  34. Thanassi J. A, Hartman-Neumann S. L, Dougherty T. J, Dougherty B. A, Pucci M. J. 2002; Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae . Nucleic Acids Res 30:3152–3162 [CrossRef]
    [Google Scholar]
  35. Thomaides H. B. 1999 Identification and characterisation of genes involved in cell division and sporulation in Bacillus subtilis DPhil thesis University of Oxford;
    [Google Scholar]
  36. Vagner V, Dervyn E, Ehrlich S. D. 1998; A vector for systematic gene inactivation in Bacillus subtilis . Microbiology 144:3097–3104 [CrossRef]
    [Google Scholar]
  37. von Heijne G. 1992; Membrane protein structure prediction: hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494 [CrossRef]
    [Google Scholar]
  38. Wang B, Kuramitsu H. K. 2003; Assessment of the utilization of the antisense RNA strategy to identify essential genes in heterologous bacteria. FEMS Microbiol Lett 220:171–176 [CrossRef]
    [Google Scholar]
  39. Willis M. A, Krajewski W, Chalamasetty V. R, Reddy P, Howard A, Herzberg O. 2002; Structure of HI1333 (YhbY), a putative RNA-binding protein from Heamophilus influenzae . Proteins 49:423–426 [CrossRef]
    [Google Scholar]
  40. Zalacain M, Biswas S, Ingraham K. A. 17 other authors 2003; A global approach to identify novel broad-spectrum antibacterial targets among proteins of unknown function. J Mol Microbiol Biotechnol 6:109–126 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29152-0
Loading
/content/journal/micro/10.1099/mic.0.29152-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed