1887

Abstract

Arabinose is a known component of plant cell walls and is found in the rhizosphere. In this work, a previously undeleted region of the megaplasmid pSymB was identified as encoding genes necessary for arabinose catabolism, by Tn-B20 random mutagenesis and subsequent complementation. Transcription of this region was measured by -galactosidase assays of Tn-B20 fusions, and shown to be strongly inducible by arabinose, and moderately so by galactose and seed exudate. Accumulation of [H]arabinose in mutants and wild-type was measured, and the results suggested that this operon is necessary for arabinose transport. Although catabolite repression of the arabinose genes by succinate or glucose was not detected at the level of transcription, both glucose and galactose were found to inhibit accumulation of arabinose when present in excess. To determine if glucose was also taken up by the arabinose transport proteins, [C]glucose uptake rates were measured in wild-type and arabinose mutant strains. No differences in glucose uptake rates were detected between wild-type and arabinose catabolism mutant strains, indicating that excess glucose did not compete with arabinose for transport by the same system. Arabinose mutants were tested for the ability to form nitrogen-fixing nodules on alfalfa, and to compete with the wild-type for nodule occupancy. Strains unable to utilize arabinose did not display any symbiotic defects, and were not found to be less competitive than wild-type for nodule occupancy in co-inoculation experiments. Moreover, the results suggest that other loci are required for arabinose catabolism, including a gene encoding arabinose dehydrogenase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29148-0
2007-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/727.html?itemId=/content/journal/micro/10.1099/mic.0.29148-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Aneja P., Zachertowska A., Charles T. C. 2005; Comparison of the symbiotic and competition phenoytpes of Sinorhizobium meliloti PHB synthesis and degradation pathway mutants. Can J Microbiol 51:599–604 [CrossRef]
    [Google Scholar]
  3. Arai H., Yamamoto T., Ohishi T., Shimizu T., Nakata T., Kudo T. 1999; Genetic organization and characteristics of the 3-(3-hydroxyphenyl) propionic acid degradation pathway of Comamonas testeroni TA441. Microbiology 145:2813–2820
    [Google Scholar]
  4. Beringer J. E., Beynon J. L., Buchanan-Wollaston A. V., Johnston A. W. B. 1978; Transfer of the drug-resistance transposon Tn 5 to Rhizobium. Nature 276:633–634 [CrossRef]
    [Google Scholar]
  5. Bowen G., Rovira A. D. 1976; Microbial colonization of plant roots. Annu Rev Phytopathol 14:121–144 [CrossRef]
    [Google Scholar]
  6. Bringhurst R. M., Gage D. J. 2002; Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti . J Bacteriol 184:5385–5392 [CrossRef]
    [Google Scholar]
  7. Bringhurst R. M., Cardon Z. G., Gage D. J. 2001; Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci U S A 98:4540–4545 [CrossRef]
    [Google Scholar]
  8. Caetano-Anollés, G. 1993; Amplifying DNA with arbitrary oligonucleotide primers. PCR Methods Appl 3:85–94 [CrossRef]
    [Google Scholar]
  9. Cangelosi G. A., Ankenbauer R. G., Nester E. W. 1990; Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci U S A 87:6708–6712 [CrossRef]
    [Google Scholar]
  10. Charles T. C., Finan T. M. 1990; Genetic map of Rhizobium meliloti megaplasmid pRmeSU47b. J Bacteriol 172:2469–2476
    [Google Scholar]
  11. Charles T. C., Finan T. M. 1991; Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo . Genetics 127:5–20
    [Google Scholar]
  12. Charles T. C., Singh R. S., Finan T. M. 1990; Lactose utilization and enzymes encoded in Rhizobium meliloti : implications for population studies. J Gen Microbiol 136:2497–2502 [CrossRef]
    [Google Scholar]
  13. Clark S. R., Oresnik I. J., Hynes M. F. 2001; RpoN of Rhizobium leguminosarum bv. viciae strain VF39SM plays a central role in FnrN-dependent microaerobic regulation of genes involved in nitrogen fixation. Mol Gen Genet 264:623–633 [CrossRef]
    [Google Scholar]
  14. Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. 1966; A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61–76
    [Google Scholar]
  15. Dilworth M. H., Arwas R., McKay I. A., Saroso S., Glenn A. R. 1986; Pentose Metabolism in Rhizobium leguminosarum MNF300 and in Cowpea Rhizobium NGR234. J Gen Microbiol 132:2733–2742
    [Google Scholar]
  16. Doty S. L., Chang M., Nester E. W. 1993; The chromosomal virulence gene, chvE , of Agrobacterium tumefaciens is regulated by a LysR family member. J Bacteriol 175:7880–7886
    [Google Scholar]
  17. Duncan M. J. 1979; l-Arabinose metabolism in Rhizobia. J Gen Microbiol 113:177–179 [CrossRef]
    [Google Scholar]
  18. Duncan M. J. 1981; Properties of Tn 5 -induced carbohydrate mutants in Rhizobium meliloti . J Gen Microbiol 121:61–67
    [Google Scholar]
  19. Duncan M. J., Fraenkel D. G. 1979; α -Ketoglutarate dehydrogenase mutant of Rhizobium meliloti . J Bacteriol 137:415–419
    [Google Scholar]
  20. Finan T. M., Hartweig E., LeMieux K., Bergman K., Walker G. C., Signer E. R. 1984; General transduction in Rhizobium meliloti . J Bacteriol 159:120–124
    [Google Scholar]
  21. Finan T. M., Hirsch A. M., Leigh J. A., Johansen E., Kuldau G. A., Deegan S., Walker G. C., Signer E. R. 1985; Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40:869–877 [CrossRef]
    [Google Scholar]
  22. Finan T. M., Kunkel B., Vos G. F. D., Signer E. R. 1986; Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72
    [Google Scholar]
  23. Finan T. M., Oresnik I., Bottacin A. 1988; Mutants of Rhizobium meliloti defective in succinate metabolism. J Bacteriol 170:3396–3403
    [Google Scholar]
  24. Finan T. M., Weidner S., Wong K., Buhrmester J., Chain P., Hernandez-Lucas I., Becker A., Cowie A. other authors Vorhölter F. J. 2001; The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti . Proc Natl Acad Sci U S A 98:9889–9894 [CrossRef]
    [Google Scholar]
  25. Fry J., Wood M., Poole P. S. 2001; Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol Plant Microbe Interact 14:1016–1025 [CrossRef]
    [Google Scholar]
  26. Gage D. J., Long S. R. 1998; α -Galactoside uptake in Rhizobium meliloti : isolation and characterization of agpA , a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization. J Bacteriol 180:5739–5748
    [Google Scholar]
  27. Geer L. Y., Domrachev M., Lipman D. J., Bryant S. H. 2002; CDART: protein homology by domain architecture. Genome Res 12:1619–1623 [CrossRef]
    [Google Scholar]
  28. Glazebrook J., Walker G. C. 1991; Genetic techniques in Rhizobium meliloti . Methods Enzymol 204:398–418
    [Google Scholar]
  29. Huang M. L., Cangelosi G. A., Halperin W., Nester E. W. 1990; A chromosomal Agrobacterium tumefaciens gene required for effective plant signal transduction. J Bacteriol 172:1814–1822
    [Google Scholar]
  30. Jiménez-Zurdo, J. I., van Dillewijn P., Soto M. J., de Felipe M. R., Olivares J., Toro N. 1995; Characterization of a Rhizobium meliloti proline dehydrogenase mutant altered in nodulation efficiency and competitiveness on alfalfa roots. Mol Plant Microbe Interact 8:492–498 [CrossRef]
    [Google Scholar]
  31. Jiménez-Zurdo J. I., García-Rodríguez, F. M., Toro N. 1997; The Rhizobium meliloti putA gene: its role in the establishment of the symbiotic interaction with alfalfa. Mol Microbiol 23:85–93 [CrossRef]
    [Google Scholar]
  32. Kemner J. M., Liang X., Nester E. W. 1997; The Agrobacterium tumefaciens virulence gene chvE is part of a putative ABC-type sugar transport operon. J Bacteriol 179:2452–2458
    [Google Scholar]
  33. Knee E. M., Gong F. C., Gao M., Teplitski M., Jones A. R., Foxworthy A., Mort A. J., Bauer W. D. 2001; Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant Microbe Interact 14:775–784 [CrossRef]
    [Google Scholar]
  34. Locher K. P. 2004; Structure and mechanism of ABC transporters. Curr Opin Struct Biol 14:426–431 [CrossRef]
    [Google Scholar]
  35. McNeil M., Darvill A. G., Fry S. C., Albersheim P. 1984; Structure and function of the primary cell walls of plants. Annu Rev Biochem 53:625–663 [CrossRef]
    [Google Scholar]
  36. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M. 1982; Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn 5 mutagenesis. J Bacteriol 149:114–122
    [Google Scholar]
  37. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Mulligan J. T., Long S. R. 1985; Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc Natl Acad Sci U S A 82:6609–6613 [CrossRef]
    [Google Scholar]
  39. Oresnik I. J., Charles T. C., Finan T. M. 1994; Second site mutations specifically suppress the Fix- phenotype of Rhizobium meliloti ndvF mutations on alfalfa: identification of a conditional ndvF -dependent mucoid colony phenotype. Genetics 136:1233–1243
    [Google Scholar]
  40. Oresnik I. J., Pacarynuk L. A., O'Brien S. A. P., Yost C. K., Hynes M. F. 1998; Plasmid-encoded catabolic genes in Rhizobium leguminosarum bv. trifolii : Evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol Plant Microbe Interact 11:1175–1185 [CrossRef]
    [Google Scholar]
  41. Østerås M., Driscoll B. T., Finan T. M. 1995; Molecular and expression analysis of the Rhizobium meliloti phosphoenolpyruvate carboxykinase ( pckA ) gene. J Bacteriol 177:1452–1460
    [Google Scholar]
  42. Pedrosa F. O., Zancan G. T. 1974; L-Arabinose metabolism in Rhizobium japonicum . J Bacteriol 119:336–338
    [Google Scholar]
  43. Phillips D. A., Sande E. S., Vriezen J. A. C., de Bruijn F. J., Le Rudulier D., Joseph C. M. 1998; A new genetic locus in Sinorhizobium meliloti is involved in stachydrine utilization. Appl Environ Microbiol 43:117–163
    [Google Scholar]
  44. Quevillon E., Silventoinen V., Pillai S., Harte N., Mulder N., Apweiler R., Lopez R. 2005; InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120 [CrossRef]
    [Google Scholar]
  45. Raffa R. G., Raivio T. L. 2002; A third envelope stress signal transduction pathway in Escherichia coli . Mol Microbiol 45:1599–1611 [CrossRef]
    [Google Scholar]
  46. Richardson J. S., Hynes M. F., Oresnik I. J. 2004; A genetic locus necessary for rhamnose uptake and catabolism in Rhizobium leguminosarum bv. trifolii . J Bacteriol 186:8433–8442 [CrossRef]
    [Google Scholar]
  47. Rosenblueth M., Hynes M. F., Martínez-Romero, E. 1998; Rhizobium tropici teu genes involved in specific uptake of Phaseolis vulgaris bean-exudate compounds. Mol Gen Genet 258:587–598 [CrossRef]
    [Google Scholar]
  48. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  49. Simon R., Quandt J., Klipp W. 1989; New derivatives of transposon Tn 5 suitable for mobilization of replicon, generation of operon fusions and induction of genes in Gram-negative bacteria. Gene 80:161–169 [CrossRef]
    [Google Scholar]
  50. Soedarjo M., Borthakur D. 1998; Mimosine, a toxin produced by the tree-legume Leucaena provides a nodulation competition advantage to mimosine-degrading Rhizobium strains. Soil Biol Biochem 30:1605–1613 [CrossRef]
    [Google Scholar]
  51. Spaink H. P. 2000; Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288 [CrossRef]
    [Google Scholar]
  52. Stoscheck C. M. 1990; Quantitation of protein. Methods Enzymol 182:50–68
    [Google Scholar]
  53. Stowers M. D. 1985; Carbon metabolism in Rhizobium species. Annu Rev Microbiol 39:89–108 [CrossRef]
    [Google Scholar]
  54. Streit W. R., Joseph C. M., Phillips D. A. 1996; Biotine and other water-soluble vitamins are key growth factors for alfalfa colonization by Rhizobium meliloti 1021. Mol Plant Microbe Interact 9:330–338 [CrossRef]
    [Google Scholar]
  55. Ucker D. S., Signer E. R. 1978; Catabolite-repression-like phenomenon in Rhizobium meliloti . J Bacteriol 136:1197–1200
    [Google Scholar]
  56. Vincent J. M. 1970 A Manual for the Practical Study of Root Nodule Bacteria Oxford: Blackwell Scientific;
    [Google Scholar]
  57. Watanabe S., Tsutomu K., Makino K. 2006; Cloning, expression, and characterization of bacterial l-arabinose 1-dehydrogenase involved in an alternative pathway of l-arabinose metabolism. J Biol Chem 281:2612–2623
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29148-0
Loading
/content/journal/micro/10.1099/mic.0.29148-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error