1887

Abstract

The extremely radioresistant bacterium contains two LexA homologues (LexA1 and LexA2) that are possible transcriptional regulators associated with the DNA damage response. In this study, resequencing revealed that there was an additional cytosine nucleotide (nucleotide position 612) in the gene. Purified LexA2 possessed proteolytic activity that could be stimulated by RecA. In an effort to gain an insight into the role of LexA2 in the radiation response mechanism, , and disruptant strains were generated and investigated. The intracellular level of RecA increased in and disruptant strains following -irradiation as in the wild-type strain. These results indicated that the two LexA homologues did not possess functional overlap regarding the induction of RecA. The disruptant strains exhibited a much higher resistance to -rays than the wild-type strain. Furthermore, a luciferase assay showed that promoter activation was enhanced in the disruptant strain following -irradiation. The gene encoding the novel radiation-inducible protein PprA plays a critical role in the radioresistance of . The increase in radioresistance of the disruptant strain is explained in part by the enhancement of promoter activation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29139-0
2006-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3217.html?itemId=/content/journal/micro/10.1099/mic.0.29139-0&mimeType=html&fmt=ahah

References

  1. Anderson A. W, Nordan H. C, Cain R. F, Parrish G, Duggan D. 1956; Studies on a radio-resistant Micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol 10:575–578
    [Google Scholar]
  2. Bateman A, Coin L, Durbin R. 10 other authors 2004; The Pfam protein families database. Nucleic Acids Res 32:D138–D141 [CrossRef]
    [Google Scholar]
  3. Battista J. R. 1997; Against all odds: the survival strategies of Deinococcus radiodurans . Annu Rev Microbiol 51:203–224 [CrossRef]
    [Google Scholar]
  4. Bonacossa de Almeida C, Costa G, Sommer S, Bailone A. 2002; Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Mol Genet Genomics 268:28–41 [CrossRef]
    [Google Scholar]
  5. Cox M. M, Battista J. R. 2005; Deinococcus radiodurans – the consummate survivor. Nat Rev Microbiol 3:882–892 [CrossRef]
    [Google Scholar]
  6. Dean C. J, Feldschreiber P, Lett J. T. 1966; Repair of X-ray damage to the deoxyribonucleic acid in Micrococcus radiodurans . Nature 209:49–52 [CrossRef]
    [Google Scholar]
  7. Earl A. M, Mohundro M. M, Mian S, Battista J. R. 2002; The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J Bacteriol 184:6216–6224 [CrossRef]
    [Google Scholar]
  8. Fogh R. H, Ottleben G, Schnarr M, Boelens R, Kaptein R, Rüterjans H. 1994; Solution structure of the LexA repressor DNA binding domain determined by [sup]1[/sup]H NMR spectroscopy. EMBO J 13:3936–3944
    [Google Scholar]
  9. Friedberg E. C, Walker G. C, Siede W. 1995 DNA Repair and Mutagenesis Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Funayama T, Narumi I, Kikuchi M, Kitayama S, Watanabe H, Yamamoto K. 1999; Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans . Mutat Res 435:151–161 [CrossRef]
    [Google Scholar]
  11. Grimsley J. K, Masters C. I, Clark E. P, Minton K. W. 1991; Analysis by pulsed-field gel electrophoresis of DNA double-strand breakage and repair in Deinococcus radiodurans and a radiosensitive mutant. Int J Radiat Biol 60:613–626 [CrossRef]
    [Google Scholar]
  12. Hansen M. T. 1980; Four proteins synthesized in response to deoxyribonucleic acid damage in Micrococcus radiodurans . J Bacteriol 141:81–86
    [Google Scholar]
  13. Horii T, Ogawa T, Ogawa H. 1981; Nucleotide sequence of the lexA gene of E. coli . Cell 23:689–697 [CrossRef]
    [Google Scholar]
  14. Hua Y, Narumi I, Gao G, Tian B, Satoh K, Kitayama S, Shen B. 2003; PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans . Biochem Biophys Res Commun 306:354–360 [CrossRef]
    [Google Scholar]
  15. Islam M. S, Hua Y, Ohba H, Satoh K, Kikuchi M, Yanagisawa T, Narumi I. 2003; Characterization and distribution of IS 8301 in the radioresistant bacterium Deinococcus radiodurans . Genes Genet Syst 78:319–327 [CrossRef]
    [Google Scholar]
  16. Jolivet E, Lecointe F, Coste G, Satoh K, Narumi I, Bailone A, Sommer S. 2005; Limited concentration of RecA delays DNA double strand break repair in Deinococcus radiodurans R1. Mol Microbiol 59:338–349
    [Google Scholar]
  17. Kikuchi M, Narumi I, Kitayama S, Watanabe H, Yamamoto K. 1999; Genomic organization of the radioresistant bacterium Deinococcus radiodurans : physical map and evidence for multiple replicons. FEMS Microbiol Lett 174:151–157 [CrossRef]
    [Google Scholar]
  18. Kitayama S, Matsuyama A. 1968; Possibility of the repair of double-strand scissions in Micrococcus radiodurans DNA caused by gamma-rays. Biochem Biophys Res Commun 33:418–422 [CrossRef]
    [Google Scholar]
  19. Kitayama S, Matsuyama A. 1971; Double-strand scissions in DNA of gamma-irradiated Micrococcus radiodurans and their repair during postirradiation incubation. Agric Biol Chem 35:644–652 [CrossRef]
    [Google Scholar]
  20. Kitayama S, Matsuyama A. 1975; Loss of characteristic radiation resistance by mutation of Micrococcus radiodurans . Mutat Res 29:327–332 [CrossRef]
    [Google Scholar]
  21. Lipton M. S, Pasa-Tolic L, Anderson G. A. 19 other authors 2002; Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc Natl Acad Sci U S A 99:11049–11054 [CrossRef]
    [Google Scholar]
  22. Liu Y, Zhou J, Omelchenko M. V. 12 other authors 2003; Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci U S A 100:4191–4196 [CrossRef]
    [Google Scholar]
  23. Luo Y, Pfuetzner R. A, Mosimann S, Paetzel M, Frey E. A, Cherney M, Kim B, Little J. W, Strynadka N. C. J. 2001; Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Cell 106:585–594 [CrossRef]
    [Google Scholar]
  24. Makarova K. S, Aravind L, Wolf Y. I, Tatusov R. L, Minton K. W, Koonin E. V, Daly M. J. 2001; Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65:44–79 [CrossRef]
    [Google Scholar]
  25. Mattimore V, Udupa K. S, Berne G. A, Battista J. R. 1995; Genetic characterization of forty ionizing radiation-sensitive strains of Deinococcus radiodurans : linkage information from translation. J Bacteriol 177:5232–5237
    [Google Scholar]
  26. Mennecier S, Coste G, Servant P, Bailone A, Sommer S. 2004; Mismatch repair ensures fidelity of replication and recombination in the radioresistant organism Deinococcus radiodurans . Mol Genet Genomics 272:460–469 [CrossRef]
    [Google Scholar]
  27. Miller R. V, Kokjohn T. A. 1990; General microbiology of recA . Environmental and evolutionary significance. Annu Rev Microbiol 44:365–394 [CrossRef]
    [Google Scholar]
  28. Moseley B. E. B. 1967; The isolation and some properties of radiation sensitive mutants of Micrococcus radiodurans . J Gen Microbiol 49:293–300 [CrossRef]
    [Google Scholar]
  29. Narumi I. 2003; Unlocking radiation resistance mechanisms: still a long way to go. Trends Microbiol 11:422–425 [CrossRef]
    [Google Scholar]
  30. Narumi I, Cherdchu K, Kitayama S, Watanabe H. 1997; The Deinococcus radiodurans uvrA gene: identification of mutation sites of two mitomycin-sensitive strains and the first discovery of insertion sequence element from deinobacteria. Gene 198:115–126 [CrossRef]
    [Google Scholar]
  31. Narumi I, Satoh K, Kikuchi M, Funayama T, Kitayama S, Yanagisawa T, Watanabe H, Yamamoto K. 1999; Molecular analysis of the Deinococcus radiodurans recA locus and identification of a mutation site in a DNA repair-deficient mutant, rec30. Mutat Res 435:233–243 [CrossRef]
    [Google Scholar]
  32. Narumi I, Satoh K, Kikuchi M, Funayama T, Yanagisawa T, Kobayashi Y, Watanabe H, Yamamoto K. 2001; The LexA protein from Deinococcus radiodurans is not involved in RecA induction following γ irradiation. J Bacteriol 183:6951–6956 [CrossRef]
    [Google Scholar]
  33. Narumi I, Satoh K, Cui S, Funayama T, Kitayama S, Watanabe H. 2004; PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol 54:278–285 [CrossRef]
    [Google Scholar]
  34. Nishida H, Narumi I. 2002; Disruption analysis of DR1420 and/or DR1758 in the extremely radioresistant bacterium Deinococcus radiodurans . Microbiology 148:2911–2914
    [Google Scholar]
  35. Ohba H, Satoh K, Yanagisawa T, Narumi I. 2005; The radiation responsive promoter of the Deinococcus radiodurans pprA gene. Gene 363:133–141 [CrossRef]
    [Google Scholar]
  36. Roca A. I, Cox M. M. 1990; The RecA protein: structure and function. Crit Rev Biochem Mol Biol 25:415–456 [CrossRef]
    [Google Scholar]
  37. Satoh K, Narumi I, Kikuchi M, Kitayama S, Yanagisawa T, Yamamoto K, Watanabe H. 2002; Characterization of RecA424 and RecA670 proteins from Deinococcus radiodurans . J Biochem 131:121–129 [CrossRef]
    [Google Scholar]
  38. Sheng D, Zheng Z, Tian B, Shen B, Hua Y. 2004; LexA analog (dra0074) is a regulatory protein that is irrelevant to recA induction. J Biochem 136:787–793 [CrossRef]
    [Google Scholar]
  39. Tanaka A, Hirano H, Kikuchi M, Kitayama S, Watanabe H. 1996; Changes in cellular proteins of Deinococcus radiodurans following γ -irradiation. Radiat Environ Biophys 35:95–99 [CrossRef]
    [Google Scholar]
  40. Tanaka M, Earl A. M, Howell H. A, Park M. J, Eisen J. A, Peterson S. N, Battista J. R. 2004; Analysis of Deinococcus radiodurans 's transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 168:21–33 [CrossRef]
    [Google Scholar]
  41. Thompson J. D, Higgins D. G, Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  42. Walker G. C. 1984; Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli . Microbiol Rev 48:60–93
    [Google Scholar]
  43. White O, Eisen J. A, Heidelberg J. F. 29 other authors 1999; Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577 [CrossRef]
    [Google Scholar]
  44. Wojciechowski M. F, Peterson K. R, Love P. E. 1991; Regulation of the SOS response in Bacillus subtilis : evidence for a LexA repressor homolog. J Bacteriol 173:6489–6498
    [Google Scholar]
  45. Zhang C, Wei J, Zheng Z, Ying N, Sheng D, Hua Y. 2005; Proteomic analysis of Deinococcus radiodurans recovering from γ -irradiation. Proteomics 5:138–143 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29139-0
Loading
/content/journal/micro/10.1099/mic.0.29139-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error