1887

Abstract

Effects of tRNA(UGC) and its derivative devoid of the 3′-ACCA motif [tRNA(UGC)ΔACCA] on the cleavage of the ColE1-like plasmid-derived RNA I were analysed and . In an amino-acid-starved mutant, in which uncharged tRNAs occur in large amounts, three products of specific cleavage of RNA I were observed, in contrast to an otherwise isogenic host. Overexpression of tRNA(UGC), which under such conditions occurs in mostly in an uncharged form, induced RNA I cleavage and resulted in an increase in ColE1-like plasmid DNA copy number. Such effects were not observed during overexpression of the 3′-ACCA-truncated tRNA(UGC). Moreover, tRNA(UGC), but not tRNA(UGC)ΔACCA, caused RNA I cleavage in the presence of MgCl. These results strongly suggest that tRNA-dependent RNA I cleavage occurs in ColE1-like plasmid-bearing , and demonstrate that tRNA(UGC) participates in specific degradation of RNA I and . This reaction is dependent on the presence of the 3′-ACCA motif of tRNA(UGC).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29134-0
2006-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3467.html?itemId=/content/journal/micro/10.1099/mic.0.29134-0&mimeType=html&fmt=ahah

References

  1. Been, M. D. & Wickham, G. S. ( 1997; ). Self-cleaving ribozymes of hepatitis delta virus RNA. Eur J Biochem 247, 741–753.[CrossRef]
    [Google Scholar]
  2. Behlke, M. A. ( 2006; ). Progress towards in vivo use of siRNAs. Mol Ther 13, 644–670.[CrossRef]
    [Google Scholar]
  3. Binnie, U., Wong, K., McAteer, S. & Masters, M. ( 1999; ). Absence of RNase III alters the pathway by which RNA I, the antisense inhibitor of ColE1 replication, decays. Microbiology 145, 3089–3100.
    [Google Scholar]
  4. Birikh, K. R., Heaton, P. A. & Eckstein, F. ( 1997; ). The structure, function and application of the hammerhead ribozyme. Eur J Biochem 245, 1–16.[CrossRef]
    [Google Scholar]
  5. Cashel, M., Gentry, D. R., Hernandez, V. J. & Vinella, D. ( 1996; ). The stringent response. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 1458–1496. Edited by. F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  6. Cayama, E., Yepez, A., Rotondo, F., Bandeira, E., Ferreras, A. C. & Triana-Alonso, F. J. ( 2000; ). New chromatographic and biochemical strategies for quick preparative isolation of tRNA. Nucleic Acids Res 28, e64.[CrossRef]
    [Google Scholar]
  7. Cesareni, G., Helmer-Citterich, M. & Castagnoli, L. ( 1991; ). Control of ColE1 plasmid replication by antisense RNA. Trends Genet 7, 230–235.[CrossRef]
    [Google Scholar]
  8. Chatterji, D. & Ojha, A. K. ( 2001; ). Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol 4, 160–165.[CrossRef]
    [Google Scholar]
  9. Chatwin, H. M. & Summers, D. K. ( 2001; ). Monomer-dimer control of the ColE1 P(cer) promoter. Microbiology 147, 3071–3081.
    [Google Scholar]
  10. Collins, R. A. ( 2002; ). The Neurospora Varkud satellite ribozyme. Biochem Soc Trans 30, 1122–1126.
    [Google Scholar]
  11. Dittmar, K. A., Mobley, E. M., Radek, A. J. & Pan, T. ( 2004; ). Exploring the regulation of tRNA distribution on the genomic scale. J Mol Biol 337, 31–47.[CrossRef]
    [Google Scholar]
  12. Doi, N., Zenno, S., Ueda, R., Ohki-Hamazaki, H., Ui-Tei, K. & Saigo, K. ( 2003; ). Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol 13, 41–46.[CrossRef]
    [Google Scholar]
  13. Dorsett, Y. & Tuschl, T. ( 2004; ). siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3, 318–329.[CrossRef]
    [Google Scholar]
  14. Doudna, J. A. & Cech, T. R. ( 2002; ). The chemical repertoire of natural ribozymes. Nature 418, 222–228.[CrossRef]
    [Google Scholar]
  15. Fedor, M. J. ( 2000; ). Structure and function of the hairpin ribozyme. J Mol Biol 297, 269–291.[CrossRef]
    [Google Scholar]
  16. Fedor, M. J. ( 2002; ). The role of metal ions in RNA catalysis. Curr Opin Struct Biol 12, 289–295.[CrossRef]
    [Google Scholar]
  17. Fedor, M. J. & Williamson, J. R. ( 2005; ). The catalytic diversity of RNAs. Nat Rev Mol Cell Biol 6, 399–412.
    [Google Scholar]
  18. Fiil, N. & Friesen, J. D. ( 1968; ). Isolation of “relaxed” mutants of Escherichia coli. J Bacteriol 95, 729–731.
    [Google Scholar]
  19. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. ( 1983; ). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857.[CrossRef]
    [Google Scholar]
  20. He, L., Söderbom, F., Wagner, E. G. H., Binnie, U., Binns, N. & Masters, M. ( 1993; ). PcnB is required for the rapid degradation of RNA I, the antisense RNA that controls the copy number of ColE1-related plasmids. Mol Microbiol 9, 1131–1142.[CrossRef]
    [Google Scholar]
  21. Hoagland, M. B., Stephenson, M. L., Scott, J. F., Hecht, L. I. & Zamecnik, P. C. ( 1958; ). A soluble ribonucleic acid intermediate in protein synthesis. J Biol Chem 231, 241–257.
    [Google Scholar]
  22. Jacquier, A. ( 1996; ). Group II introns: elaborate ribozymes. Biochimie 78, 474–487.[CrossRef]
    [Google Scholar]
  23. Jasiecki, J. & Węgrzyn, G. ( 2003; ). Growth-rate dependent RNA polyadenylation in Escherichia coli. EMBO Rep 4, 172–177.[CrossRef]
    [Google Scholar]
  24. Jasiecki, J. & Węgrzyn, G. ( 2006; ). Transcription start sites in the promoter region of the Escherichia coli pcnB (plasmid copy number) gene coding for poly(A) polymerase I. Plasmid 55, 169–172.[CrossRef]
    [Google Scholar]
  25. Kim, D., Rhee, Y., Rhodes, D., Sharma, V., Sorenson, O., Greener, A. & Smider, V. ( 2005a; ). Directed evolution and identification of control regions of ColE1 plasmid replication origins using only nucleotide deletions. J Mol Biol 351, 763–775.[CrossRef]
    [Google Scholar]
  26. Kim, J., Jung, J. H., Reyes, J. L. & 9 other authors ( 2005b; ). microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42, 84–94.[CrossRef]
    [Google Scholar]
  27. Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E. & Cech, T. R. ( 1982; ). Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157.[CrossRef]
    [Google Scholar]
  28. Kues, U. & Stahl, U. ( 1989; ). Replication of plasmids in gram-negative bacteria. Microbiol Rev 53, 491–516.
    [Google Scholar]
  29. Lee, Y. S., Nakahara, K., Pham, J. W., Kim, K., He, Z., Sontheimer, E. J. & Carthew, R. W. ( 2004; ). Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81.[CrossRef]
    [Google Scholar]
  30. Lilley, D. M. J. ( 1999; ). Structure, folding and catalysis of the small nucleolytic ribozymes. Curr Opin Struct Biol 9, 330–338.[CrossRef]
    [Google Scholar]
  31. Lin-Chao, S. & Cohen, S. N. ( 1991; ). The rate of processing and degradation of antisense RNA I regulates the replication of ColE1-type plasmids in vivo. Cell 65, 1233–1242.[CrossRef]
    [Google Scholar]
  32. Lopilato, J., Bortner, S. & Beckwith, J. ( 1986; ). Mutations in a new chromosomal gene of Escherichia coli K-12, pcnB, reduce plasmid copy number of pBR322 and its derivatives. Mol Gen Genet 205, 285–290.[CrossRef]
    [Google Scholar]
  33. Marquet, R., Isel, C., Ehresmann, C. & Ehresmann, B. ( 1995; ). tRNAs as primer of reverse transcriptases. Biochimie 77, 113–124.[CrossRef]
    [Google Scholar]
  34. Misra, V. K. & Draper, D. E. ( 2002; ). The linkage between magnesium binding and RNA folding. J Mol Biol 317, 507–521.[CrossRef]
    [Google Scholar]
  35. Polisky, B. ( 1988; ). ColE1 replication control circuitry: sense from antisense. Cell 55, 929–932.[CrossRef]
    [Google Scholar]
  36. Ronemus, M., Vaughn, M. W. & Martienssen, R. A. ( 2006; ). MicroRNA-targeted and small interfering RNA-mediated mRNA degradation is regulated by argonaute, dicer, and RNA-dependent RNA polymerase in Arabidopsis. Plant Cell 18, 1559–1574.[CrossRef]
    [Google Scholar]
  37. Sago, N., Omi, K., Tamura, Y., Kunugi, H., Toyo-oka, T., Tokunaga, K. & Hohjoh, H. ( 2004; ). RNAi induction and activation in mammalian muscle cells where Dicer and eIF2C translation initiation factors are barely expressed. Biochem Biophys Res Commun 319, 50–57.[CrossRef]
    [Google Scholar]
  38. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Schmidt, U., Budde, E. & Stahl, U. ( 1992; ). Self-splicing of a mitochondrial group I intron from the cytochrome b gene of the ascomycete Podospora anserina. Mol Gen Genet 233, 71–80.[CrossRef]
    [Google Scholar]
  40. Sharpe, M. E., Chatwin, H. M., Macpherson, C., Withers, H. L. & Summers, D. K. ( 1999; ). Analysis of the ColE1 stability determinant Rcd. Microbiology 145, 2135–2144.[CrossRef]
    [Google Scholar]
  41. Shen, B. & Goodman, H. M. ( 2004; ). Uridine addition after microRNA-directed cleavage. Science 306, 997.[CrossRef]
    [Google Scholar]
  42. Sorensen, M. A. ( 2001; ). Charging levels of four tRNA species in Escherichia coli Rel+ and Rel strains during amino acid starvation: a simple model for the effect of ppGpp on translational accuracy. J Mol Biol 307, 785–798.[CrossRef]
    [Google Scholar]
  43. Sorensen, M. A., Elf, J., Bouakaz, E., Tenson, T., Sanyal, S., Bjork, G. R. & Ehrenberg, M. ( 2005; ). Over expression of a tRNALeu isoacceptor changes charging pattern of leucine tRNAs and reveals new codon reading. J Mol Biol 354, 16–24.[CrossRef]
    [Google Scholar]
  44. Tanner, N. K. ( 1999; ). Ribozymes: the characteristics and properties of catalytic RNAs. FEMS Microbiol Rev 23, 257–275.[CrossRef]
    [Google Scholar]
  45. Tomizawa, J. ( 1990; ). Control of ColE1 plasmid replication. Intermediates in the binding of RNA I and RNA II. J Mol Biol 212, 683–694.[CrossRef]
    [Google Scholar]
  46. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J. & Parker, R. ( 2006; ). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20, 515–524.[CrossRef]
    [Google Scholar]
  47. Wagner, E. G. H. & Simons, R. W. ( 1994; ). Antisense RNA control in bacteria, phage and plasmids. Annu Rev Microbiol 48, 713–742.[CrossRef]
    [Google Scholar]
  48. Wang, Z., Le, G., Shi, Y. & Węgrzyn, G. ( 2001; ). Medium design for plasmid DNA production based on stoichiometric model. Process Biochem 36, 1085–1093.[CrossRef]
    [Google Scholar]
  49. Wang, Z., Le, G., Shi, Y., Węgrzyn, G. & Wróbel, B. ( 2002; ). A model for regulation of ColE1-like plasmid replication by uncharged tRNAs in amino acid-starved Escherichia coli cells. Plasmid 47, 69–78.[CrossRef]
    [Google Scholar]
  50. Wang, Z., Yuan, Z. & Hengge, U. R. ( 2004; ). Processing of plasmid DNA with ColE1-like replication origin. Plasmid 51, 149–161.[CrossRef]
    [Google Scholar]
  51. Wang, Z., Xiang, L., Shao, J. & Yuan, Z. ( 2006; ). The 3′ CCACCA sequence of tRNAAla(UGC) is the motif that is important in inducing Th1-like immune response, and this motif can be recognized by Toll-like receptor 3. Clin Vaccine Immunol 13, 733–739.[CrossRef]
    [Google Scholar]
  52. Węgrzyn, G. ( 1999; ). Replication of plasmids during bacterial response to amino acid starvation. Plasmid 41, 1–16.[CrossRef]
    [Google Scholar]
  53. Wong, E. M. & Polisky, B. ( 1985; ). Alternative conformations of the ColE1 replication primer modulate its interaction with RNA I. Cell 42, 959–966.[CrossRef]
    [Google Scholar]
  54. Wróbel, B. & Węgrzyn, G. ( 1997; ). Differential amplification efficiency of pMB1 and p15A (ColE1-type) replicons in Escherichia coli stringent and relaxed strains starved for particular amino acids. Microbiol Res 152, 251–255.[CrossRef]
    [Google Scholar]
  55. Wróbel, B. & Węgrzyn, G. ( 1998; ). Replication regulation of ColE1-like plasmids in amino acid-starved Escherichia coli. Plasmid 39, 48–62.[CrossRef]
    [Google Scholar]
  56. Xu, F. & Cohen, S. N. ( 1995; ). RNA degradation in Escherichia coli regulated by 3′ adenylation and 5′ phosphorylation. Nature 374, 180–183.[CrossRef]
    [Google Scholar]
  57. Xu, F., Lin-Chao, S. & Cohen, S. N. ( 1993; ). The Escherichia coli pcnB gene promotes adenylation of antisense RNA I of ColE1-type plasmids in vivo and degradation of RNA I decay intermediates. Proc Natl Acad Sci U S A 90, 6756–6760.[CrossRef]
    [Google Scholar]
  58. Yekta, S., Shih, I. H. & Bartel, D. P. ( 2004; ). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596.[CrossRef]
    [Google Scholar]
  59. Zeng, Y., Yi, R. & Cullen, B. R. ( 2003; ). MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100, 9779–9784.[CrossRef]
    [Google Scholar]
  60. Zhang, H., Kolb, F. A., Brondani, V., Billy, E. & Filipowicz, W. ( 2002; ). Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21, 5875–5885.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29134-0
Loading
/content/journal/micro/10.1099/mic.0.29134-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error