Contribution of the SirA regulon to biofilm formation in serovar Typhimurium Free

Abstract

Orthologues of the serovar Typhimurium () BarA/SirA two-component system are important for biofilm formation and virulence in many -. In , SirA activates the and carbon storage regulatory RNAs and the virulence gene regulators and . The regulatory RNAs antagonize the activity of the CsrA protein, allowing translation of those same virulence genes, and inhibiting the translation of flagellar genes. In this report, it was determined that SirA and the Csr system also control the operon that encodes type 1 fimbriae. orthologues in other bacterial species, and the operon of , are known to play a role in biofilm formation; therefore, all members of the regulon were tested for biofilm production. A mutant, a double mutant, and a mutant, were all defective in biofilm formation. Conversely, inactivation of increased biofilm formation. Therefore, SirA activates , and the operon to promote biofilm formation. In turn, and promote the translation of the operon, while at the same time inhibiting the translation of flagella, which are inhibitory to biofilm formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29118-0
2006-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3411.html?itemId=/content/journal/micro/10.1099/mic.0.29118-0&mimeType=html&fmt=ahah

References

  1. Ahmer B. M, Timmers C. D, Valentine P. J, Heffron F, van Reeuwijk J. 1998; Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J Bacteriol 180:1185–1193
    [Google Scholar]
  2. Ahmer B. M, Watson P. R, Wallis T. S, Heffron F, van Reeuwijk J. 1999; Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol 31:971–982 [CrossRef]
    [Google Scholar]
  3. Altier C, Suyemoto M, Lawhon S. D. 2000a; Regulation of Salmonella enterica serovar typhimurium invasion genes by csrA . Infect Immun 68:6790–6797 [CrossRef]
    [Google Scholar]
  4. Altier C, Suyemoto M, Ruiz A. I, Burnham K. D, Maurer R. 2000b; Characterization of two novel regulatory genes affecting Salmonella invasion gene expression. Mol Microbiol 35:635–646
    [Google Scholar]
  5. Bajaj V, Lucas R. L, Hwang C, Lee C. A. 1996; Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol 22:703–714 [CrossRef]
    [Google Scholar]
  6. Beloin C, Ghigo J. M. 2005; Finding gene-expression patterns in bacterial biofilms. Trends Microbiol 13:16–19 [CrossRef]
    [Google Scholar]
  7. Boddicker J. D, Ledeboer N. A, Jagnow J, Jones B. D, Clegg S. 2002; Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol Microbiol 45:1255–1265 [CrossRef]
    [Google Scholar]
  8. Boddicker J. D, Knosp B. M, Jones B. D. 2003; Transcription of the Salmonella invasion gene activator, hilA , requires HilD activation in the absence of negative regulators. J Bacteriol 185:525–533 [CrossRef]
    [Google Scholar]
  9. Brandl M. T. 2006; Fitness of human enteric pathogens on plants and implications for food safety. Annu Rev Phytopathol (in press)
    [Google Scholar]
  10. Chilcott G. S, Hughes K. T. 2000; Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli . Microbiol Mol Biol Rev 64:694–708 [CrossRef]
    [Google Scholar]
  11. Clarke M. B, Sperandio V. 2005; Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorrhagic Escherichia coli . Mol Microbiol 57:1734–1749 [CrossRef]
    [Google Scholar]
  12. Darwin K. H, Miller V. L. 1999; InvF is required for expression of genes encoding proteins secreted by the SPI1 type III secretion apparatus in Salmonella typhimurium . J Bacteriol 181:4949–4954
    [Google Scholar]
  13. Darwin K. H, Miller V. L. 2001; Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium . EMBO J 20:1850–1862 [CrossRef]
    [Google Scholar]
  14. Datsenko K. A, Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [CrossRef]
    [Google Scholar]
  15. Edwards R. A, Keller L. H, Schifferli D. M. 1998; Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207:149–157 [CrossRef]
    [Google Scholar]
  16. Ellermeier C. D, Janakiraman A, Slauch J. M. 2002; Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene 290:153–161 [CrossRef]
    [Google Scholar]
  17. Fortune D. R, Suyemoto M, Altier C. 2006; Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect Immun 74:331–339 [CrossRef]
    [Google Scholar]
  18. Gerstel U, Park C, Romling U. 2003; Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 49:639–654
    [Google Scholar]
  19. Goodier R. I, Ahmer B. M. 2001; SirA orthologs affect both motility and virulence. J Bacteriol 183:2249–2258 [CrossRef]
    [Google Scholar]
  20. Hammer B. K, Bassler B. L. 2003; Quorum sensing controls biofilm formation in Vibrio cholerae . Mol Microbiol 50:101–104 [CrossRef]
    [Google Scholar]
  21. Heeb S, Haas D. 2001; Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact 14:1351–1363 [CrossRef]
    [Google Scholar]
  22. Hood S. K, Zottola E. A. 1997; Adherence to stainless steel by foodborne microorganisms during growth in model food systems. Int J Food Microbiol 37:145–153 [CrossRef]
    [Google Scholar]
  23. Iniguez A. L, Dong Y, Carter H. D, Ahmer B. M, Stone J. M, Triplett E. W. 2005; Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant Microbe Interact 18:169–178 [CrossRef]
    [Google Scholar]
  24. Jackson D. W, Simecka J. W, Romeo T. 2002; Catabolite repression of Escherichia coli biofilm formation. J Bacteriol 184:3406–3410 [CrossRef]
    [Google Scholar]
  25. Kalogeraki V. S, Winans S. C. 1997; Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188:69–75 [CrossRef]
    [Google Scholar]
  26. Karlinsey J. E, Tanaka S, Bettenworth V, Yamaguchi S, Boos W, Aizawa S. I, Hughes K. T. 2000; Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol Microbiol 37:1220–1231 [CrossRef]
    [Google Scholar]
  27. Kutsukake K. 1997; Autogenous and global control of the flagellar master operon, flhD , in Salmonella typhimurium . Mol Gen Genet 254:440–448 [CrossRef]
    [Google Scholar]
  28. Lawhon S. D, Maurer R, Suyemoto M, Altier C. 2002; Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol 46:1451–1464 [CrossRef]
    [Google Scholar]
  29. Lawhon S. D, Frye J. G, Suyemoto M, Porwollik S, McClelland M, Altier C. 2003; Global regulation by CsrA in Salmonella typhimurium . Mol Microbiol 48:1633–1645 [CrossRef]
    [Google Scholar]
  30. Liu M. Y, Romeo T. 1997; The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. J Bacteriol 179:4639–4642
    [Google Scholar]
  31. Lostroh C. P, Bajaj V, Lee C. A. 2000; The cis requirements for transcriptional activation by HilA, a virulence determinant encoded on SPI-1. Mol Microbiol 37:300–315 [CrossRef]
    [Google Scholar]
  32. Martino P. D, Fursy R, Bret L, Sundararaju B, Phillips R. S. 2003; Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol 49:443–449 [CrossRef]
    [Google Scholar]
  33. Merighi M, Ellermeier C. D, Slauch J. M, Gunn J. S. 2005; Resolvase-in vivo expression technology analysis of the Salmonella enterica serovar Typhimurium PhoP and PmrA regulons in BALB/c mice. J Bacteriol 187:7407–7416 [CrossRef]
    [Google Scholar]
  34. Metcalf W. W, Jiang W, Daniels L. L, Kim S. K, Haldimann A, Wanner B. L. 1996; Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35:1–13 [CrossRef]
    [Google Scholar]
  35. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Miller V. L, Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol 170:2575–2583
    [Google Scholar]
  37. Mireles J. R. 2nd, Toguchi A, Harshey R. M. 2001; Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854 [CrossRef]
    [Google Scholar]
  38. Momba M. N, Kaleni P. 2002; Regrowth and survival of indicator microorganisms on the surfaces of household containers used for the storage of drinking water in rural communities of South Africa. Water Res 36:3023–3028 [CrossRef]
    [Google Scholar]
  39. O'Toole G, Kaplan H. B, Kolter R. 2000; Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79 [CrossRef]
    [Google Scholar]
  40. Parkins M. D, Ceri H, Storey D. G. 2001; Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40:1215–1226 [CrossRef]
    [Google Scholar]
  41. Pasmore M, Costerton J. W. 2003; Biofilms, bacterial signaling, and their ties to marine biology. J Ind Microbiol Biotechnol 30:407–413 [CrossRef]
    [Google Scholar]
  42. Pernestig A. K, Georgellis D, Romeo T, Suzuki K, Tomenius H, Normark S, Melefors O. 2003; The Escherichia coli BarA-UvrY two-component system is needed for efficient switching between glycolytic and gluconeogenic carbon sources. J Bacteriol 185:843–853 [CrossRef]
    [Google Scholar]
  43. Pratt L. A, Kolter R. 1998; Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293 [CrossRef]
    [Google Scholar]
  44. Pratt L. A, Silhavy T. J. 1995; Identification of base pairs important for OmpR-DNA interaction. Mol Microbiol 17:565–573 [CrossRef]
    [Google Scholar]
  45. Prouty A. M, Schwesinger W. H, Gunn J. S. 2002; Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 70:2640–2649 [CrossRef]
    [Google Scholar]
  46. Pruss B. M, Campbell J. W, Van Dyk T. K, Zhu C, Kogan Y, Matsumura P. 2003; FlhD/FlhC is a regulator of anaerobic respiration and the Entner–Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol 185:534–543 [CrossRef]
    [Google Scholar]
  47. Romeo T. 1998; Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330 [CrossRef]
    [Google Scholar]
  48. Romling U. 2001; Genetic and phenotypic analysis of multicellular behavior in Salmonella typhimurium . Methods Enzymol 336:48–59
    [Google Scholar]
  49. Schembri M. A, Kjaergaard K, Klemm P. 2003; Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267 [CrossRef]
    [Google Scholar]
  50. Schmeisser C, Stockigt C, Raasch C. 8 other authors 2003; Metagenome survey of biofilms in drinking-water networks. Appl Environ Microbiol 69:7298–7309 [CrossRef]
    [Google Scholar]
  51. Shirtliff M. E, Mader J. T, Camper A. K. 2002; Molecular interactions in biofilms. Chem Biol 9:859–871 [CrossRef]
    [Google Scholar]
  52. Skorupski K, Taylor R. K. 1996; Positive selection vectors for allelic exchange. Gene 169:47–52 [CrossRef]
    [Google Scholar]
  53. Solano C, Garcia B, Valle J, Berasain C, Ghigo J. M, Gamazo C, Lasa I. 2002; Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793–808 [CrossRef]
    [Google Scholar]
  54. Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, Bertin P. 1999; Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP–catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508
    [Google Scholar]
  55. Suzuki K, Wang X, Weilbacher T, Pernestig A. K, Melefors O, Georgellis D, Babitzke P, Romeo T. 2002; Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli . J Bacteriol 184:5130–5140 [CrossRef]
    [Google Scholar]
  56. Teplitski M. 2006 E. coli and Salmonella on Animal Farms: Sources, Survival and Management . Extension Publication of the University of Florida SL-239 Gainesville, FL: University of Florida/Institute of Food and Agricultural Sciences;
    [Google Scholar]
  57. Teplitski M, Ahmer B. M. 2004; The control of secondary metabolism, motility, and virulence by the two-component regulatory system BarA/SirA of Salmonella and other γ -proteobacteria. In Global Regulatory Networks in Enteric Bacteria pp  107–133 Edited by Pruss B. M. Kerala, India: Research Signpost;
    [Google Scholar]
  58. Teplitski M, Goodier R. I, Ahmer B. M. 2003; Pathways leading from BarA/SirA to motility and virulence gene expression in Salmonella . J Bacteriol 185:7257–7265 [CrossRef]
    [Google Scholar]
  59. Teplitski M, Goodier R. I, Ahmer B. M. M. 2006; Catabolite repression of the SirA regulatory cascade in Salmonella enterica . Intl J Med Microbiol (in press)
    [Google Scholar]
  60. Tischler A. D, Camilli A. 2004; Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 53:857–869 [CrossRef]
    [Google Scholar]
  61. Tomenius H, Pernestig A. K, Mendez-Catala C. F, Georgellis D, Normark S, Melefors O. 2005; Genetic and functional characterization of the Escherichia coli BarA-UvrY two-component system: point mutations in the HAMP linker of the BarA sensor give a dominant-negative phenotype. J Bacteriol 187:7317–7324 [CrossRef]
    [Google Scholar]
  62. Tomoyasu T, Ohkishi T, Ukyo Y. 7 other authors 2002; The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium . J Bacteriol 184:645–653 [CrossRef]
    [Google Scholar]
  63. Valenski M. L, Harris S. L, Spears P. A, Horton J. R, Orndorff P. E. 2003; The product of the fimI gene is necessary for Escherichia coli type 1 pilus biosynthesis. J Bacteriol 185:5007–5011 [CrossRef]
    [Google Scholar]
  64. Wang R. F, Kushner S. R. 1991; Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli . Gene 100:195–199 [CrossRef]
    [Google Scholar]
  65. Webb J. S, Givskov M, Kjelleberg S. 2003; Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol 6:578–585 [CrossRef]
    [Google Scholar]
  66. Wei B. L, Brun-Zinkernagel A. M, Simecka J. W, Pruss B. M, Babitzke P, Romeo T. 2001; Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli . Mol Microbiol 40:245–256 [CrossRef]
    [Google Scholar]
  67. Weilbacher T, Suzuki K, Dubey A. K. 7 other authors 2003; A novel sRNA component of the carbon storage regulatory system of Escherichia coli . Mol Microbiol 48:657–670 [CrossRef]
    [Google Scholar]
  68. Whistler C. A, Corbell N. A, Sarniguet A, Ream W, Loper J. E. 1998; The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigmaS and the stress response in Pseudomonas fluorescens Pf-5. J Bacteriol 180:6635–6641
    [Google Scholar]
  69. Winson M. K, Swift S, Fish L, Throup J. P, Jorgensen F, Chhabra S. R, Bycroft B. W, Williams P, Stewart G. S. 1998; Construction and analysis of luxCDABE -based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192 [CrossRef]
    [Google Scholar]
  70. Wolfe A. J, Chang D. E, Walker J. D. 7 other authors 2003; Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol Microbiol 48:977–988 [CrossRef]
    [Google Scholar]
  71. Yeh K. S, Tinker J. K, Clegg S. 2002; FimZ binds the Salmonella typhimurium fimA promoter region and may regulate its own expression with FimY. Microbiol Immunol 46:1–10 [CrossRef]
    [Google Scholar]
  72. Zhang S, Kingsley R. A, Santos R. L. 7 other authors 2003; Molecular pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrhea. Infect Immun 71:1–12 [CrossRef]
    [Google Scholar]
  73. Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U. 2001; The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29118-0
Loading
/content/journal/micro/10.1099/mic.0.29118-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed