The vesicle transport protein Vac1p is required for virulence of Free

Abstract

The putative vesicle transport protein Vac1p of the human pathogenic yeast plays an important role in virulence. To determine the cellular functions of Vac1p, a null mutant was generated by sequential disruption of both alleles. The null mutant strain showed defective endosomal vesicle transport, demonstrating a role of Vac1p in protein transport to the vacuole. Vac1p also contributes to resistance to metal ions, as the null mutant strain was hypersensitive to Cu, Zn and Ni. In addition, the loss of Vac1p affected several virulence factors of . In particular, the null mutant strain showed defective hyphal growth, even when hyphal formation was induced via different pathways. Furthermore, Vac1p affects chlamydospore formation, adherence to human vaginal epithelial cells, and the secretion of aspartyl proteinases (Saps). Avirulence in a mouse model of systemic infection of the null mutant strongly suggests that Vac1p of is essential for pathogenicity. In summary, the Vac1p protein is required for several cellular pathways, in particular those that control virulence and pathogenicity. Consequently, Vac1p is a novel and interesting target for antifungal drugs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29115-0
2006-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/3111.html?itemId=/content/journal/micro/10.1099/mic.0.29115-0&mimeType=html&fmt=ahah

References

  1. Augsten M, Nguyen M, Eck R, Hübner C, Künkel W, Härtl A. 2002; Defective hyphal induction on solid media of a Candida albicans phosphatidylinositol 3-phosphate 5-kinase null mutant does not lead to decreased virulence. Infect Immun 70:4462–4470 [CrossRef]
    [Google Scholar]
  2. Boeke J. D, LaCroute F, Fink G. R. 1984; A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346 [CrossRef]
    [Google Scholar]
  3. Bruckmann A, Wetzker R, Eck R, Künkel W, Härtl A. 2000; A phosphatidylinositol 3-kinase of Candida albicans influences adhesion, filamentous growth, and virulence. Microbiology 146:2755–2764
    [Google Scholar]
  4. Bruckmann A, Augsten K, Wetzker R, Eck R, Künkel W. 2001; The deletion of CaVPS34 in the human pathogenic yeast Candida albicans causes defects in vesicle-mediated protein sorting and nuclear segregation. Yeast 18:343–353 [CrossRef]
    [Google Scholar]
  5. Burd C. G, Emr S. D. 1998; Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol Cell 2:157–162 [CrossRef]
    [Google Scholar]
  6. Burd C. G, Peterson M, Cowles C, Emr S. D. 1997; A novel Sec18/NSF-dependent complex required for Golgi-to-endosome transport in yeast. Mol Biol Cell 8:1089–1104 [CrossRef]
    [Google Scholar]
  7. Cutler J. E. 1991; Putative virulence factors of Candida albicans . Annu Rev Microbiol 45:187–218 [CrossRef]
    [Google Scholar]
  8. Eck R, Bergmann C, Ziegelbauer K, Schönfeld W, Künkel W. 1997; A neutral trehalase gene from Candida albicans : molecular cloning, characterization and disruption. Microbiology 143:3747–3756 [CrossRef]
    [Google Scholar]
  9. Eck R, Bruckmann A, Wetzker R, Künkel W. 2000; A phosphatidylinositol 3-kinase of Candida albicans : molecular cloning and characterization. Yeast 16:933–944 [CrossRef]
    [Google Scholar]
  10. Eck R, Nguyen M, Zipfel P. F, Günther J, Künkel W. 2005; The phosphatidylinositol 3-kinase Vps34p of the human pathogenic yeast Candida albicans is a multifunctional protein that interacts with the putative vacuolar H[sup]+[/sup]-ATPase subunit Vma7p. Int J Med Microbiol 295:57–66 [CrossRef]
    [Google Scholar]
  11. El Barkani A, Kurzai O, Fonzi W. A, Ramon A, Porta A, Frosch M, Mühlschlegel F. A. 2000; Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans . Mol Cell Biol 20:4635–4647 [CrossRef]
    [Google Scholar]
  12. Ernst J. F. 2000a; Regulation of dimorphism in Candida albicans . Contrib Microbiol 5:98–111
    [Google Scholar]
  13. Ernst J. F. 2000b; Transcription factors in Candida albicans – environmental control of morphogenesis. Microbiology 146:1763–1774
    [Google Scholar]
  14. Fonzi W. A, Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  15. Gary J. D, Wurmser A. E, Bonangelino C. J, Weisman L. S, Emr S. D. 1998; Fab1p is essential for PI(3)P 5-kinase activity and the maintenance of vacuolar size and homeostasis. J Cell Biol 143:65–79 [CrossRef]
    [Google Scholar]
  16. Giusani A. D, Vinces M, Kumamoto C. A. 2002; Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression. Genetics 160:1749–1753
    [Google Scholar]
  17. Günther J, Nguyen M, Zipfel P. F, Eck R, Härtl A, Künkel W. 2005; Generation and functional in vivo characterization of a lipid kinase defective phosphatidylinositol 3-kinase Vps34p of Candida albicans . Microbiology 151:81–89 [CrossRef]
    [Google Scholar]
  18. Gurunathan S, David D, Gerst J. E. 2002; Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast. EMBO J 21:602–614 [CrossRef]
    [Google Scholar]
  19. Horazdovsky B, Busch G, Emr S. D. 1994; VPS21 encodes a Rab5-like GTP binding protein that is required for the sorting of yeast vacuolar proteins. EMBO J 13:1297–1309
    [Google Scholar]
  20. Kitanovic A, Nguyen M, Vogl G, Hartman A, Eck R, Günther J, Würzner R, Künkel W, Wölfl S. 2005; Phosphatidylinositol 3-kinase VPS34 of Candida albicans is involved in filamentous growth, Saps secretion, and intracellular detoxification. FEMS Yeast Res 5:431–439 [CrossRef]
    [Google Scholar]
  21. Köhler J. R., Fink G. R. 1996; Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci U S A 93:13223–13228 [CrossRef]
    [Google Scholar]
  22. Lee K. L, Buckley H. R, Campbell C. C. 1975; An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans . Sabouraudia 13:148–153 [CrossRef]
    [Google Scholar]
  23. Lo H.-J, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink G. R, Köhler J. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949 [CrossRef]
    [Google Scholar]
  24. Naglik J. R, Challacombe S. J, Hube B. 2003; Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428 [CrossRef]
    [Google Scholar]
  25. Nobile C. J, Bruno V. M, Richard M. L, Davis D. A, Mitchell A. P. 2003; Genetic control of chlamydospore formation in Candida albicans . Microbiology 149:3629–3637 [CrossRef]
    [Google Scholar]
  26. Odds F. C. 1988 Candida and Candidosis. A Review and Bibliography, 2nd edn.. London, UK: Baillière-Tindall;
    [Google Scholar]
  27. Odds F. C. 1994; Pathogenesis of Candida infections. J Am Acad Dermatol 31:S2–S5 [CrossRef]
    [Google Scholar]
  28. Palmer G. E, Cashmore A, Sturtevant J. 2003; Candida albicans VPS11 is required for vacuole biogenesis and germ tube formation. Eukaryot Cell 2:411–421 [CrossRef]
    [Google Scholar]
  29. Peterson M. R, Emr S. D. 2001; The class C Vps complex functions at multiple stages of the vacuolar transport pathway. Traffic 2:476–486 [CrossRef]
    [Google Scholar]
  30. Peterson M. R, Burd C. G, Emr S. D. 1999; Vac1 coordinates Rab and phosphatidylinositol 3-kinase signaling in Vps45-dependent vesicle docking/fusion at the endosome. Curr Biol 9:159–162 [CrossRef]
    [Google Scholar]
  31. Peto R, Pike M. C, Armitage P. 7 other authors 1977; Design and analysis of randomized clinical trials requiring prolonged observation of each patient. II. Analysis and examples. Br J Cancer 35:1–39 [CrossRef]
    [Google Scholar]
  32. Poltermann S, Nguyen M, Zipfel P. F, Eck R, Günther J, Wendland J, Härtl A, Künkel W. 2005; The putative vacuolar ATPase subunit Vma7p of Candida albicans is involved in vacuole acidification, hyphal development and virulence. Microbiology 151:1645–1655 [CrossRef]
    [Google Scholar]
  33. Schaller M, Bein M, Korting H. C, Baur S, Hamm G, Monod M, Beinhauer S, Hube B. 2003; The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun 71:3227–3324 [CrossRef]
    [Google Scholar]
  34. Sonneborn A, Bockmuhl D. P, Ernst J. F. 1999; Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator. Infect Immun 67:5514–5517
    [Google Scholar]
  35. Srivastava A, Woolford C. A, Jones E. W. 2000; Pep3p/Pep5p complex: a putative docking factor at multiple steps of vesicular transport to the vacuole of Saccharomyces cerevisiae . Genetics 156:105–122
    [Google Scholar]
  36. Stenmark H, Aasland R. 1999; FYVE-finger proteins – effectors of an inositol lipid. J Cell Sci 112:4175–4183
    [Google Scholar]
  37. Stenmark H, Aasland R, Toh B.-H, D'Arrigo A. 1996; Endosomal localization of the autoantigene EEA1 is mediated by a zinc-binding FYFE finger. J Biol Chem 271:24048–24054 [CrossRef]
    [Google Scholar]
  38. Subramanian S, Woolford C. A, Jones E. W. 2004; The Sec1/Munc18 protein, Vps33, function at the endosome and the vacuole of Saccharomyces cerevisiae . Mol Biol Cell 15:2593–2605 [CrossRef]
    [Google Scholar]
  39. Swoboda R. K, Bertram G, Delbruck S, Ernst J. F, Gow N. A, Gooday G. W, Brown A. J. 1994; Fluctuations in glycolytic mRNA levels during morphogenesis in Candida albicans reflect underlying changes in growth and are not a response to cellular dimorphism. Mol Microbiol 13:663–672 [CrossRef]
    [Google Scholar]
  40. Tall G. G, Hama H, DeWald D. B, Horazdovsky B. F. 1999; The phosphatidylinositol 3-phosphate binding protein Vac1p interacts with a Rab GTPase and a Sec1p homologue to facilitate vesicle-mediated vacuolar protein sorting. Mol Biol Cell 10:1873–1889 [CrossRef]
    [Google Scholar]
  41. Torosantucci A, Cassone A. 1983; Induction and morphogenesis of chlamydospores in an agerminative variant of Candida albicans . Sabouraudia 21:49–57 [CrossRef]
    [Google Scholar]
  42. Vida T. A, Emr S. D. 1995; A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792 [CrossRef]
    [Google Scholar]
  43. Webb G. C, Hoedt M, Poole L. J, Jones E. W. 1997; Genetic interactions between a pep7 mutation and the PEP12 and VPS45 genes: evidence for a novel SNARE component in transport between the Saccharomyces cerevisiae Golgi complex and endosome. Genetics 147:467–478
    [Google Scholar]
  44. Weisman L. S, Wicker W. 1992; Molecular characterization of VAC1 , a gene required for vacuole inheritance and vacuole protein sorting. J Biol Chem 267:618–623
    [Google Scholar]
  45. Wurmser A. E, Emr S. D. 1998; Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J 17:4930–4942 [CrossRef]
    [Google Scholar]
  46. Yanisch-Perron C, Vieira J, Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequence of M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29115-0
Loading
/content/journal/micro/10.1099/mic.0.29115-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed