1887

Abstract

Plant-interacting micro-organisms can establish either mutualistic or pathogenic associations. Although the outcome is completely different, common molecular mechanisms that mediate communication between the interacting partners seem to be involved. Specifically, nitrogen-fixing bacterial symbionts of legume plants, collectively termed rhizobia, and phytopathogenic bacteria have adopted similar strategies and genetic traits to colonize, invade and establish a chronic infection in the plant host. Quorum-sensing signals and identical two-component regulatory systems are used by these bacteria to coordinate, in a cell density-dependent manner or in response to changing environmental conditions, the expression of important factors for host colonization and infection. The success of invasion and survival within the host also requires that rhizobia and pathogens suppress and/or overcome plant defence responses triggered after microbial recognition, a process in which surface polysaccharides, antioxidant systems, ethylene biosynthesis inhibitors and virulence genes are involved.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29112-0
2006-11-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3167.html?itemId=/content/journal/micro/10.1099/mic.0.29112-0&mimeType=html&fmt=ahah

References

  1. Abramovitch, R. B. & Martin, G. B. ( 2004; ). Strategies used by bacterial pathogens to suppress plant defenses. Curr Opin Plant Biol 7, 356–364.[CrossRef]
    [Google Scholar]
  2. Bartsev, A., Boukli, N. M., Deakin, W. J., Staehelin, C. & Broughton, W. J. ( 2003; ). Purification and phosphorylation of the effector protein NopL from Rhizobium sp. NGR234. FEBS Lett 554, 271–274.[CrossRef]
    [Google Scholar]
  3. Bartsev, A., Deakin, W. J., Boukli, N. M., McAlvin, C. B., Stacey, G., Malnoë, P., Broughton, W. J. & Staehelin, C. ( 2004a; ). NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol 134, 871–879.[CrossRef]
    [Google Scholar]
  4. Bartsev, A., Kobayashi, H. & Broughton, W. J. ( 2004b; ). Rhizobial signals convert pathogens to symbionts at the legume interface. In Plant Microbiology, pp. 19–31. Edited by M. Gillings & A. Holmes. Abingdon: Garland Science/BIOS Scientific Publishers.
  5. Bell, K. S., Sebaihia, M., Pritchard, L. & 13 other authors ( 2004; ). Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci U S A 101, 11105–11110.[CrossRef]
    [Google Scholar]
  6. Bueno, P., Soto, M. J., Rodríguez-Rosales, M. P., Sanjuan, J., Olivares, J. & Donaire, J. P. ( 2001; ). Time course of lipoxygenase, antioxidant enzyme acitivities and H2O2 accumulation during the early stages of Rhizobium-legume symbiosis. New Phytol 152, 91–96.[CrossRef]
    [Google Scholar]
  7. Cascales, E. & Christie, P. J. ( 2003; ). The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1, 137–149.[CrossRef]
    [Google Scholar]
  8. Chen, L., Chen, Y., Wood, D. W. & Nester, E. W. ( 2002; ). A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens. J Bacteriol 184, 4838–4845.[CrossRef]
    [Google Scholar]
  9. Cheng, H. & Walker, G. C. ( 1998; ). Succinoglycan production by Rhizobium meliloti is regulated through the ExoS/ChvI two-component regulatory system. J Bacteriol 180, 20–26.
    [Google Scholar]
  10. Clough, S. J., Flavier, A. B., Schell, M. A. & Denny, T. P. ( 1997; ). Differential expression of virulence genes and motility in Ralstonia (Pseudomonas) solanacearum during exponential growth. Appl Environ Microbiol 63, 844–850.
    [Google Scholar]
  11. Cubo, M. T., Economou, A., Murphy, G., Johnston, A. W. & Downie, J. A. ( 1992; ). Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. J Bacteriol 174, 4026–4035.
    [Google Scholar]
  12. Daniels, R., de Vos, D. E., Desair, J. & 7 other authors ( 2002; ). The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277, 462–468.[CrossRef]
    [Google Scholar]
  13. D'Haeze, W., Glushka, J., De Rycke, R., Holsters, M. & Carlson, R. W. ( 2004; ). Structural characterization of extracellular polysaccharides of Azorhizobium caulinodans and importance for nodule initiation on Sesbania rostrata. Mol Microbiol 52, 485–500.[CrossRef]
    [Google Scholar]
  14. Dong, X. ( 1998; ). SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 1, 316–323.[CrossRef]
    [Google Scholar]
  15. Dow, J. M., Crossman, L., Findlay, K., He, Y. Q., Feng, J. X. & Tang, J. L. ( 2003; ). Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100, 10995–11000.[CrossRef]
    [Google Scholar]
  16. Engledow, A. S., Meldrano, E. G., Mahenthiralingam, E., LiPuma, J. J. & Gonzalez, C. F. ( 2004; ). Involvement of a plasmid-encoded type IV secretion system in the plant tissue watersoaking phenotype of Burkholderia cenocepacia. J Bacteriol 186, 6015–6024.[CrossRef]
    [Google Scholar]
  17. Ferguson, B. J. & Mathesius, U. ( 2003; ). Signaling interactions during nodule development. J Plant Growth Regul 22, 47–72.[CrossRef]
    [Google Scholar]
  18. Flavier, A. B., Clough, S. J., Schell, M. A. & Denny, T. P. ( 1997; ). Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 26, 251–259.[CrossRef]
    [Google Scholar]
  19. Fraysse, N., Courdec, F. & Poinsot, V. ( 2003; ). Surface polysaccharide involvement in establishing the Rhizobium-legume symbiosis. Eur J Biochem 270, 1365–1380.[CrossRef]
    [Google Scholar]
  20. Gao, M., Chen, H., Eberhard, A., Gronquist, M. R., Robinson, J. B., Rolfe, B. G. & Bauer, W. D. ( 2005; ). sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti. J Bacteriol 187, 7931–7944.[CrossRef]
    [Google Scholar]
  21. González, J. E. & Marketon, M. M. ( 2003; ). Quorum sensing in nitrogen-fixing bacteria. Microbiol Mol Biol Rev 67, 574–592.[CrossRef]
    [Google Scholar]
  22. Harrison, J., Jamet, A., Muglia, C. I., Van de Sype, G. Aguilar O. M., Puppo, A. & Frendo, P. ( 2005; ). Glutathione plays a fundamental role in growth and symbiotic capacity of Sinorhizobium meliloti. J Bacteriol 187, 168–174.[CrossRef]
    [Google Scholar]
  23. Hérouart, D., Baudouin, E., Frendo, P., Harrison, J., Santos, R., Jamet, A., van de Sype, G., Touati, D. & Puppo, A. ( 2002; ). Reactive oxygen species, nitric oxide and glutathione: a key role in the establishment of the legume-Rhizobium symbiosis? Plant Physiol Biochem 40, 619–624.[CrossRef]
    [Google Scholar]
  24. Hoang, H. H., Becker, A. & González, J. E. ( 2004; ). The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J Bacteriol 186, 5460–5472.[CrossRef]
    [Google Scholar]
  25. Hubber, A., Vergunst, A. C., Sullivan, J. T., Hooykaas, P. J. J. & Ronson, C. W. ( 2004; ). Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol 54, 561–574.[CrossRef]
    [Google Scholar]
  26. Hueck, C. J. ( 1998; ). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62, 379–433.
    [Google Scholar]
  27. Keith, L. M. W. & Bender, C. L. ( 1999; ). AlgT (σ 22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J Bacteriol 181, 7176–7184.
    [Google Scholar]
  28. Koutsoudis, M. D., Tsaltas, D., Minogue, T. D. & von Bodman, S. B. ( 2006; ). Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci U S A 103, 5983–5988.[CrossRef]
    [Google Scholar]
  29. Li, L., Jia, Y., Hou, Q., Charles, T. C., Nester, E. W. & Pan, S. Q. ( 2002; ). A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci U S A 99, 12369–12374.[CrossRef]
    [Google Scholar]
  30. Loh, J., Carlson, R. W., York, W. S. & Stacey, G. ( 2002a; ). Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci U S A 99, 14446–14451.[CrossRef]
    [Google Scholar]
  31. Loh, J., Pierson, E. A., Pierson, L. S., III, Stacey, G. & Chatterjee, A. ( 2002b; ). Quorum sensing in plant-associated bacteria. Curr Opin Plant Biol 5, 1–6.[CrossRef]
    [Google Scholar]
  32. Ma, W., Penrose, D. M. & Glick, B. R. ( 2002; ). Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can J Microbiol 48, 947–954.[CrossRef]
    [Google Scholar]
  33. Marie, C., Broughton, W. J. & Deakin, W. J. ( 2001; ). Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4, 336–342.[CrossRef]
    [Google Scholar]
  34. Marie, C., Deakin, W. J., Viprey, V., Kopcinska, J., Golinowski, W., Krishnan, H. B., Perret, X. & Broughton, W. J. ( 2003; ). Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol Plant Microbe Interact 16, 743–751.[CrossRef]
    [Google Scholar]
  35. Marie, C., Deakin, W. J., Ojanen-Reuhs, T., Diallo, E., Reuhs, B., Broughton, W. J. & Perret, X. ( 2004; ). TtsI, a key regulator of Rhizobium species NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol Plant Microbe Interact 17, 958–966.[CrossRef]
    [Google Scholar]
  36. Marketon, M. M., Glenn, S. A., Eberhard, A. & González, J. E. ( 2003; ). Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185, 325–331.[CrossRef]
    [Google Scholar]
  37. Martínez-Abarca, F., Herrera-Cervera, J. A., Bueno, P., Sanjuan, J., Bisseling, T. & Olivares, J. ( 1998; ). Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alfalfa symbiosis. Mol Plant Microbe Interact 11, 153–155.[CrossRef]
    [Google Scholar]
  38. Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anollés, G., Rolfe, B. G. & Bauer, W. D. ( 2003; ). Extensive and specific responses of a eukaryote to bacterial quorum sensing signals. Proc Natl Acad Sci U S A 100, 1444–1449.[CrossRef]
    [Google Scholar]
  39. Miller, M. B. & Bassler, B. L. ( 2001; ). Quorum sensing in bacteria. Annu Rev Microbiol 55, 165–195.[CrossRef]
    [Google Scholar]
  40. Mitchell, R. E., Frey, E. J. & Benn, M. K. ( 1986; ). Rhizobitoxine and 1-threo-hydroxythreonine production by the plant pathogen Pseudomonas andropogonis. Phytochemistry 25, 2711–2715.
    [Google Scholar]
  41. Mithöfer, A., Bahgwat, A. A., Keister, D. L. & Ebel, J. ( 2001; ). Bradyrhizobium japonicum mutants defective in cyclic α-glucanes synthesis show enhanced sensitivity to plant defense responses. Z Naturforsch 56c, 581–584.
    [Google Scholar]
  42. Mudgett, M. B. ( 2005; ). New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu Rev Plant Biol 56, 509–531.[CrossRef]
    [Google Scholar]
  43. Perret, X., Staehelin, C. & Broughton, W. J. ( 2000; ). Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64, 180–201.[CrossRef]
    [Google Scholar]
  44. Pesci, E. C., Milbank, J. B. J., Pearson, J. P., McKnight, S., Kende, A. S., Greenberg, E. P. & Iglewski, B. H. ( 1999; ). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96, 11229–11234.[CrossRef]
    [Google Scholar]
  45. Quiñones, B., Dulla, G. & Lindow, S. E. ( 2005; ). Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 18, 682–693.[CrossRef]
    [Google Scholar]
  46. Riccillo, P. M., Muglia, C. I., de Bruijn, F. J., Roe, A. J., Booth, I. R. & Aguilar, O. M. ( 2000; ). Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J Bacteriol 182, 1748–1753.[CrossRef]
    [Google Scholar]
  47. Santos, R., Franza, T., Laporte, M. L., Sauvage, C., Touati, D. & Expert, D. ( 2001; ). Essential role of superoxide dismutase on the pathogenicity of Erwinia chrysanthemi strain 3937. Mol Plant Microbe Interact 14, 758–767.[CrossRef]
    [Google Scholar]
  48. Scheidle, H., Groß, A. & Niehaus, K. ( 2005; ). The lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants. New Phytol 165, 559–566.
    [Google Scholar]
  49. Shaw, S. L. & Long, S. R. ( 2003; ). Nod factor inhibition of reactive oxygen efflux in a host legume. Plant Physiol 132, 2196–2204.[CrossRef]
    [Google Scholar]
  50. Skorpil, P., Saad, M. M., Boukli, N. M., Kobayashi, H., Ares-Orpel, F., Broughton, W. J. & Deakin, W. J. ( 2005; ). NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol Microbiol 57, 1304–1317.[CrossRef]
    [Google Scholar]
  51. Van Sluys, M. A., Monteiro-Vitorello, C. B., Camargo, L. E. & 7 other authors ( 2002; ). Comparative genomic analysis of plant-associated bacteria. Annu Rev Phytopathol 40, 169–189.[CrossRef]
    [Google Scholar]
  52. Von Bodman, S. B., Bauer, W. D. & Coplin, D. L. ( 2003; ). Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41, 455–482.[CrossRef]
    [Google Scholar]
  53. Wang, L. H., He, Y., Gao, Y. & 9 other authors ( 2004a; ). A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51, 903–912.
    [Google Scholar]
  54. Wang, H., Zhong, Z., Cai, T., Li, S. & Zhu, J. ( 2004b; ). Heterologous overexpression of quorum-sensing regulators to study cell-density-dependent phenotypes in a symbiotic plant bacterium Mesorhizobium huakuii. Arch Microbiol 182, 520–525.[CrossRef]
    [Google Scholar]
  55. Winans, S. C. ( 1992; ). Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Rev 56, 12–31.
    [Google Scholar]
  56. Xu, X. Q. & Pan, S. Q. ( 2000; ). An Agrobacterium catalase is a virulence factor involved in tumorigenesis. Mol Microbiol 35, 407–414.[CrossRef]
    [Google Scholar]
  57. Yao, S. Y., Luo, L., Har, K. J., Becker, A., Rüberg, S., Yu, G. Q., Zhu, J. B. & Cheng, H. P. ( 2004; ). Sinorhizobium meliloti ExoR and ExoS proteins regulate both succinoglycan and flagellum production. J Bacteriol 186, 6042–6049.[CrossRef]
    [Google Scholar]
  58. Yu, J., Peñaloza-Vázquez, A., Chakrabarty, A. M. & Bender, C. L. ( 1999; ). Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol Microbiol 33, 712–720.[CrossRef]
    [Google Scholar]
  59. Zheng, H., Zhong, Z., Lai, X., Chen, W. X., Li, S. & Zhu, J. ( 2006; ). A LuxR/LuxI-type quorum-sensing system in a plant bacterium, Mesorhizobium tianshanense, controls symbiotic nodulation. J Bacteriol 188, 1943–1949.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29112-0
Loading
/content/journal/micro/10.1099/mic.0.29112-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error