1887

Abstract

Unexpectedly high culturable diversity of moderately and extremely halophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria (SOB) was discovered in the sediments of various hypersaline habitats, including chloride-sulfate lakes in Mongolia, Russia and Ukraine, a sea saltern in Slovenia and a deep-sea salt brine from the Mediterranean. Six different groups of halophilic SOB, including four new genera, all belonging to the Gammaproteobacteria, were found. Two groups of moderately halophilic strictly aerobic SOB dominated at 2 M NaCl, including representatives of the genus (in fully aerobic conditions) and (in micro-oxic conditions). Under denitrifying conditions at 2 M NaCl, a group of moderately halophilic and facultatively anaerobic SOB was selected, capable of complete denitrification of nitrate. The group represents a new genus with closest relatives among as yet undescribed marine thiodenitrifying isolates. With thiocyanate as a substrate, an enrichment culture at 2 M NaCl yielded a pure culture of moderately halophilic SOB capable of aerobic growth with thiocyanate and thiosulfate at up to 4 M NaCl. Furthermore, this bacterium also grew anaerobically using nitrite as electron acceptor. It formed a new lineage distantly related to the genus . Enrichments at 4 M NaCl resulted in the domination of two different, previously unknown, groups of extremely halophilic SOB. Under oxic conditions, they were represented by strictly aerobic spiral-shaped bacteria, related to the , while under denitrifying conditions a group of facultatively anaerobic nitrate-reducing bacteria with long rod-shaped cells was selected, distantly related to the genus .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29106-0
2006-10-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/3013.html?itemId=/content/journal/micro/10.1099/mic.0.29106-0&mimeType=html&fmt=ahah

References

  1. Antón, J., Oren, A., Benlloch, S., Rodríguez-Valera, F., Amann, R. & Rosselló-Mora, R. ( 2002; ). Salinibacter ruber gen. nov., sp. nov., a new species of extremely halophilic Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52, 485–491.
    [Google Scholar]
  2. Baitcharov, V. M. & Nagorskaja, L. L. ( 1999; ). Reproductive characteristics of Artemia in habitats of different salinity. Int J Salt Lake Res 8, 287–291.
    [Google Scholar]
  3. Benlloch, S., López-López, A., Casamayor, E. O. & 9 other authors ( 2002; ). Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4, 349–360.[CrossRef]
    [Google Scholar]
  4. Brandt, K. K., Vester, F., Jensen, A. N. & Ingvorsen, K. ( 2001; ). Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake. Microb Ecol 41, 1–11.
    [Google Scholar]
  5. De Ley, J., Caffon, H. & Reinaerts, A. ( 1970; ). The quantitative measurements of hybridisation DNA from renaturation rates. Eur J Biochem 12, 133–140.[CrossRef]
    [Google Scholar]
  6. Friedrich, C. G., Rother, D., Bardischewsky, F., Quentmeier, A. & Fischer, J. ( 2001; ). Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67, 2873–2882.[CrossRef]
    [Google Scholar]
  7. Friedrich, C. G., Bardischewsky, F., Rother, D., Quentmeier, A. & Fischer, J. ( 2005; ). Prokaryotic sulfur oxidation. Curr Opin Microbiol 8, 253–259.[CrossRef]
    [Google Scholar]
  8. Gunde-Cimerman, N., Zalar, P., de Hoog, S. & Plemenitas, A. ( 2000; ). Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32, 235–240.
    [Google Scholar]
  9. Imhoff, J. F. ( 2005; ). Family Ectothiorhodospiraceae Imhoff. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, Part B: The Gammaproteobacteria, pp. 41–52. Edited by D. J. Brenner, N. R. Kreig & J. T. Staley. New York: Springer.
  10. Isachenko, B. L. ( 1951; ). Chloride, sulfate and soda lakes of Kulunda steppe and its biogenic processes. In Selected Works, vol. 2, pp. 143–162. Leningrad: Academy of Sciences USSR.
  11. Kelly, D. P. & Baker, S. C. ( 1990; ). The organosulfur cycle: aerobic and anaerobic processes leading to turnover of C1-sulfur compounds. FEMS Microbiol Rev 87, 241–246.[CrossRef]
    [Google Scholar]
  12. Kelly, D. P. & Wood, A. P. ( 2000; ). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50, 511–516.[CrossRef]
    [Google Scholar]
  13. Kelly, D. P., Shergill, J. K., Lu, W.-P. & Wood, A. P. ( 1997; ). Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71, 95–107.[CrossRef]
    [Google Scholar]
  14. Kelly, D. P., Stackebrandt, E., Burghardt, J. & Wood, A. P. ( 1998; ). Confirmation that Thiobacillus halophilus and Thiobacillus hydrothermalis are distinct species within the γ-subclass of the Proteobacteria. Arch Microbiol 170, 138–140.[CrossRef]
    [Google Scholar]
  15. Marmur, J. ( 1961; ). A procedure for isolation of DNA from microorganisms. J Mol Biol 3, 208–214.[CrossRef]
    [Google Scholar]
  16. Nelson, D. C. & Jannasch, H. W. ( 1983; ). Chemilithoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136, 262–269.[CrossRef]
    [Google Scholar]
  17. Nercessian, O., Fouquet, Y., Pierre, C., Prieur, D. & Jeanthon, C. ( 2005; ). Diversity of Bacteria and Archaea associated with a carbonate-rich metalliferous sediment sample from the Rainbow vent field on the Mid-Atlantic Ridge. Environ Microbiol 7, 698–714.[CrossRef]
    [Google Scholar]
  18. Oren, A. ( 1999; ). Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63, 334–348.
    [Google Scholar]
  19. Oren, A. ( 2002; ). Halophilic Microorganisms and their Environments. Dordrecht, The Netherlands: Kluwer.
  20. Pfennig, N. & Lippert, K. D. ( 1966; ). Über das Vitamin B12-bedürfnis phototropher Schwefelbacterien. Arch Microbiol 55, 245–256.
    [Google Scholar]
  21. Sass, A., Sass, H., Coolen, M. J., Cypionka, H. & Overmann, J. ( 2001; ). Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania Basin, Mediterranean Sea). Appl Environ Microbiol 67, 5392–5402.[CrossRef]
    [Google Scholar]
  22. Sørensen, K. B., Canfield, D. E. & Oren, A. ( 2004; ). Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl Environ Microbiol 70, 1608–1616.[CrossRef]
    [Google Scholar]
  23. Sorokin, D., Yu Kuenen, J. G. & Jetten, M. ( 2001a; ). Denitrification at extremely alkaline conditions in obligately autotrophic alkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio denitrificans. Arch Microbiol 175, 94–101.[CrossRef]
    [Google Scholar]
  24. Sorokin, D. Yu., Tourova, T. P., Lysenko, A. M. & Kuenen, J. G. ( 2001b; ). Microbial thiocyanate utilization under highly alkaline conditions. Appl Environ Microbiol 67, 528–538.[CrossRef]
    [Google Scholar]
  25. Sorokin, D. Yu. & Kuenen, J. G. ( 2005a; ). Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29, 685–702.[CrossRef]
    [Google Scholar]
  26. Sorokin, D. Y. & Kuenen, J. G. ( 2005b; ). Alkaliphilic chemolithotrophs from soda lakes. FEMS Microbiol Ecol 52, 287–295.[CrossRef]
    [Google Scholar]
  27. Sorokin, D. Yu., Banciu, H., Robertson, L. A. & Kuenen, J. G. ( 2005a; ). Haloalkaliphilic sulfur-oxidizing bacteria. In Prokaryotes: an Evolving Electronic Resource for the Microbiological Community. Release 3.20 (12/31/2005). http://141.150.157.117 : 8080/prokWIP/index.htm
  28. Sorokin, D. Yu., Tourova, T. P. & Muyzer, G. ( 2005b; ). Oxidation of thiosulfate to tetrathionate by a haloarchaeon from hypersaline habitat. Extremophiles 9, 501–504.[CrossRef]
    [Google Scholar]
  29. Sorokin, D. Yu., Tourova, T. P., Galinski, E. A., Belloch, C. & Tindall, B. J. ( 2006a; ). Extremely halophilic denitrifying bacteria from hypersaline inland lakes Halovibrio denitrificans sp. nov. and Halospina denitrificans gen. nov., sp. nov., and evidence that the genus name Halovibrio (Fendrich 1989) with the type species H. variabilis should be associated with DSM 3050. Int J Syst Evol Microbiol 56, 379–388.[CrossRef]
    [Google Scholar]
  30. Sorokin, D. Yu., Tourova, T. P., Kolganova, T. V., Spiridonova, E. M., Berg, I. A. & Muyzer, G. ( 2006b; ). Thiomicrospira halophila sp. nov., a novel, moderately halophilic, obligately chemolithoautotrophic sulfur-oxidizing bacterium from hypersaline lakes. Int J Syst Evol Microbiol 56 (in press).
    [Google Scholar]
  31. Van de Peer, Y. & De Wachter, R. ( 1994; ). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Applic Biosci 10, 569–570.
    [Google Scholar]
  32. Van der Wielen, P. W. J. J., Bolhuis, H., Borin, S. & 12 other authors ( 2005; ). The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307, 121–123.[CrossRef]
    [Google Scholar]
  33. Wood, A. P. & Kelly, D. P. ( 1991; ). Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidizing autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156, 277–280.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29106-0
Loading
/content/journal/micro/10.1099/mic.0.29106-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error