1887

Abstract

Diethylpyrocarbonate modification and site-directed mutagenesis studies of histidine-35 in HM-1 killer toxin (HM-1) have shown that a specific feature, the imidazole side chain of histidine-35, is essential for the expression of the killing activity. In subcellular localization experiments, wild-type HM-1 was in the membrane fraction of BJ1824, but not the HM-1 analogue in which histidine-35 was replaced by alanine (H35A HM-1). Neither wild-type nor H35A HM-1 was detected in cellular fractions of HM-1-resistant yeast BJ1824 Δ : :  and HM-1-insensitive yeast even after 1 h incubation. H35A HM-1 inhibited the activity of partially purified 1,3--glucan synthase from A451, and its extent was almost the same as wild-type HM-1. Co-immunoprecipitation experiments showed that wild-type and H35A HM-1 directly interact with the 1,3--glucan synthase complex. These results strongly suggest that histidine-35 has an important role in the cytocidal action of HM-1 that participates in the binding process to the HM-1 receptor protein on the cell membrane, but it is not essential for the interaction with, and inhibition of, 1,3--glucan synthase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29100-0
2006-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/2951.html?itemId=/content/journal/micro/10.1099/mic.0.29100-0&mimeType=html&fmt=ahah

References

  1. Antuch, W., Güntert, P. & Wüthrich, K. ( 1996; ). Ancestral β γ-crystallin precursor structure in a yeast killer toxin. Nat Struct Biol 3, 662–665.[CrossRef]
    [Google Scholar]
  2. Bussey, H. ( 1981; ). Physiology of killer factor in yeast. Adv Microb Physiol 22, 93–122.
    [Google Scholar]
  3. Bussey, H., Saville, D., Hutchins, K. & Palfree, R. G. E. ( 1979; ). Binding of yeast killer toxin to a cell wall receptor on sensitive Saccharomyces cerevisiae. J Bacteriol 140, 888–892.
    [Google Scholar]
  4. Ellgaard, L. & Helenius, A. ( 2003; ). Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4, 181–191.[CrossRef]
    [Google Scholar]
  5. Harlow, E. & Lane, D. ( 1999; ). Using Antibodies: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  6. Hutchens, K. & Bussey, H. ( 1983; ). Cell wall receptor for yeast killer toxin: involvement of (1-6)-β-d-glucan. J Bacteriol 154, 161–169.
    [Google Scholar]
  7. Kasahara, S., Inoue, S. B., Mio, T., Yamada, T., Nakajima, T., Ichishima, E., Furuichi, Y. & Yamada, H. ( 1994; ). Involvement of cell wall β-glucan in the action of HM-1 killer toxin. FEBS Lett 348, 27–32.[CrossRef]
    [Google Scholar]
  8. Kashiwagi, T., Kunishima, N., Suzuki, C., Tsuchiya, F., Nikkuni, S., Arata, Y. & Morikawa, K. ( 1997; ). The novel acidophilic structure of the killer toxin from halotolerant yeast demonstrates remarkable folding similarity with a fungal killer toxin. Structure 5, 81–94.[CrossRef]
    [Google Scholar]
  9. Kimura, T., Kitamoto, N., Matsuoka, K., Nakamura, K., Iimura, Y. & Kito, Y. ( 1993; ). Isolation and nucleotide sequence of the genes encoding killer toxins from Hansenula mrakii and H. saturnus. Gene 137, 265–270.[CrossRef]
    [Google Scholar]
  10. Kimura, T., Kitamoto, N., Kito, Y., Iimura, Y., Shirai, T., Komiyama, T., Furuichi, Y., Sakka, K. & Ohmiya, K. ( 1997; ). A novel yeast gene, RHK1, is involved in the synthesis of the cell wall receptor for the HM-1 killer toxin that inhibits β-1,3-glucan synthesis. Mol Gen Genet 254, 139–147.[CrossRef]
    [Google Scholar]
  11. Kimura, T., Iimura, Y., Komiyama, T., Karita, S., Sakka, K. & Ohmiya, K. ( 1998; ). Killing mechanism by HM-1 killer toxin of Hansenula mrakii and application of HM-1 in fermentation process to prevent contamination with wild yeasts. Recent Res Dev Ferment Bioeng 1, 225–240.
    [Google Scholar]
  12. Kimura, T., Kitamoto, N., Ohta, Y., Kito, Y. & Iimura, Y. J. ( 1995; ). Structural relationships among killer toxins secreted from the killer strains of the genus Williopsis. J Ferment Bioeng 80, 85–87.[CrossRef]
    [Google Scholar]
  13. Kimura, T., Komiyama, T., Furuichi, Y., Iimura, Y., Karita, S., Sakka, K. & Ohmiya, K. ( 1999; ). N-glycosylation is involved in the sensitivity of Saccharomyces cerevisiae to HM-1 killer toxin secreted from Hansenula mrakii IFO 0895. Appl Microbiol Biotechnol 51, 176–184.[CrossRef]
    [Google Scholar]
  14. Kishida, M., Tokunaga, M., Katayose, Y., Yajima, H., Kawamura-Watabe, A. & Hishinuma, F. ( 1996; ). Isolation and genetic characterization of pGKL killer-insensitive mutants (iki) from Saccharomyces cerevisiae. Biosci Biotechnol Biochem 60, 798–801.[CrossRef]
    [Google Scholar]
  15. Komiyama, T., Ohta, T., Urakami, H., Shiratori, Y., Takasuka, T., Sato, M., Watanabe, T. & Furuichi, Y. ( 1996; ). Pore formation on proliferating yeast Saccharomyces cerevisiae cell buds by HM-1 killer toxin. J Biochem 119, 731–736.[CrossRef]
    [Google Scholar]
  16. Komiyama, T., Kimura, T. & Furuichi, Y. ( 2002; ). Round shape enlargement of the yeast spheroplast of Saccharomyces cerevisiae by HM-1 toxin. Biol Pharm Bull 25, 959–965.[CrossRef]
    [Google Scholar]
  17. Komiyama, T., Zhang, Q., Miyamoto, M., Selvakumar, D. & Furuichi, Y. ( 2004; ). Monoclonal antibodies and sandwich ELISA for quantitation of HM-1 killer toxin. Biol Pharm Bull 27, 691–693.[CrossRef]
    [Google Scholar]
  18. Kowalski, J. M., Parekh, R. N., Mao, J. & Wittrup, K. D. ( 1998; ). Protein folding stability can determine the efficiency of escape from endoplasmic reticulum quality control. J Biol Chem 273, 19453–19458.[CrossRef]
    [Google Scholar]
  19. Kunishima, N., Kashigawa, T., Suzuki, C., Tsuchiya, F., Arata, Y. & Morikawa, K. ( 1997; ). Crystallization and preliminary X-ray diffraction studies of a novel killer toxin from a halotolerant yeast Pichia farinosa. Acta Crystallogr D Biol Crystallogr 53, 112–113.[CrossRef]
    [Google Scholar]
  20. Kurzweilova, H. & Sigler, K. ( 1994; ). Kinetic studies of killer toxin K1 binding to yeast cells indicate two receptor populations. Arch Microbiol 162, 211–214.[CrossRef]
    [Google Scholar]
  21. Marquina, D., Santos, A. & Peinado, J. M. ( 2002; ). Biology of killer yeasts. Int Microbiol 5, 65–71.[CrossRef]
    [Google Scholar]
  22. Martinac, B., Zhu, H., Kubalski, A. & Zhou, X. ( 1990; ). Yeast K1 killer toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes. Proc Natl Acad Sci U S A 87, 6228–6232.[CrossRef]
    [Google Scholar]
  23. Miles, E. W. ( 1977; ). Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol 47, 431–442.
    [Google Scholar]
  24. Miyamoto, M., Han, G.-D., Kimura, T., Furuichi, Y. & Komiyama, T. ( 2005; ). Alanine-scanning mutagenesis of HM-1 killer toxin and the essential residues for killing activity. J Biochem 137, 517–522.[CrossRef]
    [Google Scholar]
  25. Sambrook, J., Fritsh, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Schmitt, M. J. & Compain, P. ( 1995; ). Killer-toxin-resistant kre12 mutants of Saccharomyces cerevisiae: genetic and biochemical evidence for a secondary K1 membrane receptor. Arch Microbiol 164, 435–443.[CrossRef]
    [Google Scholar]
  27. Schäger, H. & von Jagow, G. ( 1987; ). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166, 368–379.[CrossRef]
    [Google Scholar]
  28. Shirai, T., Kimura, T., Furuichi, Y. & Komiyama, T. ( 2000; ). The involvement of two specific arginine residues in the action of HM-1 killer toxin was deduced from site-directed mutagenesis. Biol Pharm Bull 23, 998–1000.[CrossRef]
    [Google Scholar]
  29. Suzuki, C., Ando, Y. & Machida, S. ( 2001; ). Interaction of SMKT, a killer toxin produced by Pichia farinosa, with the yeast cell membranes. Yeast 18, 1471–1478.[CrossRef]
    [Google Scholar]
  30. Takasuka, T., Komiyama, T., Furuichi, Y. & Watanabe, T. ( 1995; ). Cell wall synthesis specific cytocidal effect of Hansenula mrakii toxin-1 on Saccharomyces cerevisiae. Cell Mol Biol Res 41, 575–581.
    [Google Scholar]
  31. Tipper, D. J. & Schmitt, M. J. ( 1991; ). Yeast dsRNA viruses: replication and killer phenotypes. Mol Microbiol 5, 2331–2338.[CrossRef]
    [Google Scholar]
  32. Tsang, V. C., Peralta, J. M. & Simons, A. R. ( 1983; ). Enzyme-linked immunoelectrotransfer blot techniques (EITB) for studying the specificities of antigens and antibodies separated by gel electrophoresis. Methods Enzymol 92, 377–391.
    [Google Scholar]
  33. Yamamoto, T., Imai, M., Tachibana, K. & Mayumi, M. ( 1986; ). Application of monoclonal antibodies to the isolation and characterization of a killer toxin secreted by Hansenula mrakii. FEBS Lett 195, 253–257.[CrossRef]
    [Google Scholar]
  34. Yamamoto, T., Uchida, K., Hiratani, T., Miyazaki, T., Yagiu, J. & Yamaguchi, H. ( 1988; ). In vitro activity of the killer toxin from yeast Hansenula mrakii against yeasts and molds. J Antibiot 41, 398–403.[CrossRef]
    [Google Scholar]
  35. Young, T. W. & Yagiu, M. ( 1978; ). A comparison of the killer character in different yeasts and its classification. Antonie van Leeuwenhoek 44, 59–77.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29100-0
Loading
/content/journal/micro/10.1099/mic.0.29100-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error