1887

Abstract

Recent interest in characterizing infectious agents associated with bioterrorism has resulted in the development of effective pathogen genotyping systems, but this information is rarely combined with phenotypic data. , the aetiological agent of plague, has been well defined genotypically on local and worldwide scales using multi-locus variable number tandem repeat analysis (MLVA), with emphasis on evolutionary patterns using old isolate collections from countries where has existed the longest. Worldwide MLVA studies are largely based on isolates that have been in long-term laboratory culture and storage, or on field material from parts of the world where has potentially circulated in nature for thousands of years. Diversity in these isolates suggests that they may no longer represent the wild-type organism phenotypically, including the possibility of altered pathogenicity. This study focused on the phenotypic and genotypic properties of 48 isolates collected from 10 plague foci in and bordering Kazakhstan. Phenotypic characterization was based on diagnostic tests typically performed in reference laboratories working with . MLVA was used to define the genotypic relationships between the central-Asian isolates and a group of North American isolates, and to examine Kazakh diversity according to predefined plague foci and on an intermediate geographical scale. Phenotypic properties revealed that a large portion of this collection lacks one or more plasmids necessary to complete the blocked flea/mammal transmission cycle, has lost Congo red binding capabilities (Pgm), or both. MLVA analysis classified isolates into previously identified biovars, and in some cases groups of isolates collected within the same plague focus formed a clade. Overall, MLVA did not distinguish unique phylogeographical groups of isolates as defined by plague foci and indicated higher genetic diversity among older biovars.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29059-0
2007-01-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/169.html?itemId=/content/journal/micro/10.1099/mic.0.29059-0&mimeType=html&fmt=ahah

References

  1. Achtman M., Zurth K., Morelli G., Torrea G., Guiyoule A., Carniel E. 1999; Yersinia pestis , the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis . Proc Natl Acad Sci U S A96:14043–14048[CrossRef]
    [Google Scholar]
  2. Achtman M., Morelli G., Zhu P.. 14 other authors 2004; Microevolution and history of the plague bacillus, Yersinia pestis . Proc Natl Acad Sci U S A101:17837–17842[CrossRef]
    [Google Scholar]
  3. Anisimov A. P., Lindler L. E., Pier G. B. 2004; Intraspecific diversity of Yersinia pestis . Clin Microbiol Rev17:434–464[CrossRef]
    [Google Scholar]
  4. Anonymous 1979; The instruction on epidemiological surveillance in the natural plague foci of Soviet Union. Proceedings of the Microbe Central Research Antiplague Institute, Saratov, 1979 in Russian
    [Google Scholar]
  5. Aparin G. P., Golubinskii E. P. 1989; Plague Microbiology Manual Irkutsk, USSR: Irkutsk State University;
    [Google Scholar]
  6. Barnes A. M. 1982; Surveillance and control of bubonic plague in the United States. Symp Zool Soc Lond50:237–270
    [Google Scholar]
  7. Begier E. M., Asiki G., Anywaine Z., Yockey B., Schriefer M. E., Aleti P., Ogden-Odoi A., Staples J. E., Sexton C.. other authors 2006; Pneumonic plague cluster, Uganda, 2004. Emerg Infect Dis12:460–467[CrossRef]
    [Google Scholar]
  8. Burrows T. W., Jackson S. 1956; The pigmentation of Pasteurella pestis on a defined medium containing haemin. Br J Exp Pathol37:570–576
    [Google Scholar]
  9. Cavalcanti Y. V., Leal N. C., De Almeida A. M. 2002; Typing of Yersinia pestis isolates from the state of Ceara. Brazil. Lett Appl Microbiol35:543–547[CrossRef]
    [Google Scholar]
  10. Cavanaugh D. C., Quan S. F. 1953; Rapid identification of Pasteurella pestis using specific bacteriophage lyophilized on strips of filter paper; a preliminary report. Am J Clin Pathol23:619–620
    [Google Scholar]
  11. Chain P. S., Carniel E., Larimer F. W., Lamardin J., Stoutland P. O., Regala W. M., Georgescu A. M., Verges L. M., Land M. L.. other authors 2004; Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis . Proc Natl Acad Sci U S A101:13826–13831[CrossRef]
    [Google Scholar]
  12. Chain P. S., Hu P., Malfatti S. A., Radnedge L., Larimer F., Vergez L. M., Worsham P., Chu M. C., Andersen G. L. 2006; Complete genome sequence of Yersinia pestis strains Antiqua and Nepal516: evidence of gene reduction in an emerging pathogen. J Bacteriol188:4453–4463[CrossRef]
    [Google Scholar]
  13. Chu M. 2000; Laboratory Manual of Plague Diagnostic Tests CDC, Department of Health and Human Services;
    [Google Scholar]
  14. Devignat R. 1951; Varieties of Pasteurella pestis ; new hypothesis. Bull World Health Organ4:247–263
    [Google Scholar]
  15. Farris J. S., Albert V. A., Kallersjo M., Lipscomb D., Kluge A. 1996; Parsimony jackknifing outperforms neighbor-joining. Cladistics12:99–181[CrossRef]
    [Google Scholar]
  16. Filippov A. A., Solodovnikov N. S., Kookleva L. M., Protsenko O. A. 1990; Plasmid content in Yersinia pestis strains of different origin. FEMS Microbiol Lett55:45–48
    [Google Scholar]
  17. Gage K. L., Kosoy M. Y. 2005; Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol50:505–528[CrossRef]
    [Google Scholar]
  18. Girard J. M., Wagner D. M., Vogler A. J., Keys C., Allender C. J., Drickamer L. C., Keim P. 2004; Differential plague-transmission dynamics determine Yersinia pestis population genetic structure on local, regional, and global scales. Proc Natl Acad Sci U S A101:8408–8413[CrossRef]
    [Google Scholar]
  19. Hinnebusch B. J., Perry R. D., Schwan T. G. 1996; Role of the Yersinia pestis hemin storage ( hms ) locus in the transmission of plague by fleas. Science273:367–370[CrossRef]
    [Google Scholar]
  20. Hinnebusch B. J., Fischer E. R., Schwan T. G. 1998; Evaluation of the role of the Yersinia pestis plasminogen activator and other plasmid-encoded factors in temperature-dependent blockage of the flea. J Infect Dis178:1406–1415[CrossRef]
    [Google Scholar]
  21. Hinnebusch J., Cherepanov P., Du Y., Rudolph A., Dixon J. D., Schwan T., Forsberg A. 2000; Murine toxin of Yersinia pestis shows phospholipase D activity but is not required for virulence in mice. Int J Med Microbiol290:483–487[CrossRef]
    [Google Scholar]
  22. Huang X. Z., Chu M. C., Engelthaler D. M., Lindler L. E. 2002; Genotyping of a homogeneous group of Yersinia pestis strains isolated in the United States. J Clin Microbiol40:1164–1173[CrossRef]
    [Google Scholar]
  23. Kado C. I., Liu S. T. 1981; Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol145:1365–1373
    [Google Scholar]
  24. Klevytska A. M., Price L. B., Schupp J. M., Worsham P. L., Wong J., Keim P. 2001; Identification and characterization of variable-number tandem repeats in the Yersinia pestis genome. J Clin Microbiol39:3179–3185[CrossRef]
    [Google Scholar]
  25. Leal-Balbino T. C., Leal N. C., Lopes C. V., Almeida A. M. 2004; Differences in the stability of the plasmids of Yersinia pestis cultures in vitro: impact on virulence. Mem Inst Oswaldo Cruz99:727–732[CrossRef]
    [Google Scholar]
  26. Link V. B. 1955; A History of Plague in the USA pp1–2 Washington, DC: United States Department of Health, Education, and Welfare;
    [Google Scholar]
  27. Lowell J. L., Wagner D. M., Atshabar B., Antolin M. F., Vogler A. J., Keim P., Chu M. C., Gage K. L. 2005; Identifying sources of human exposure to plague. J Clin Microbiol43:650–656[CrossRef]
    [Google Scholar]
  28. Maddison D. R. 1991; The discovery and importance of multiple islands of most-parsimonious trees. Syst Zool40:315–328[CrossRef]
    [Google Scholar]
  29. Martinevsky I. L. 1973; Materials for typing natural foci of plague according to the genetic properties of plague bacillus strains. J Hyg Epidemiol Microbiol Immunol17:272–278
    [Google Scholar]
  30. Motin V. L., Georgescu A. M., Elliott J. M.. 8 other authors 2002; Genetic variability of Yersinia pestis isolates as predicted by PCR-based IS 100 genotyping and analysis of structural genes encoding glycerol-3-phosphate dehydrogenase ( glpD . J Bacteriol184:1019–1027[CrossRef]
    [Google Scholar]
  31. Parkhill J., Dougan G., James K. D.. 38 other authors 2001; Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature413:848–852[CrossRef]
    [Google Scholar]
  32. Perry R. D., Fetherston J. D. 1997; Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev10:35–66
    [Google Scholar]
  33. Perry R. D., Bearden S. W., Fetherston J. D. 2001; Iron and heme acquisition and storage systems of Yersinia pestis . Rec Res Dev Microbiol5:13–27
    [Google Scholar]
  34. Protsenko O. A., Filippov A. A., Kutyrev V. V. 1991; Integration of the plasmid encoding the synthesis of capsular antigen and murine toxin into Yersinia pestis chromosome. Microb Pathog11:123–128[CrossRef]
    [Google Scholar]
  35. Rahalison L., Vololonirina E., Ratsitorahina M., Chanteau S. 2000; Diagnosis of bubonic plague by PCR in Madagascar under field conditions. J Clin Microbiol38:260–263
    [Google Scholar]
  36. Surgalla M. J., Beesley E. D. 1969; Congo red-agar plating medium for detecting pigmentation in Pasteurella pestis . Appl Microbiol18:834–837
    [Google Scholar]
  37. Swofford D. L. 2002; paup* – Phylogenetic Analysis Using Parsimony* and Other Methods Sunderland, MA: Sinauer Associates;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29059-0
Loading
/content/journal/micro/10.1099/mic.0.29059-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error