1887

Abstract

The complete 41 268 bp nucleotide sequence of the IncP-1 plasmid pBP136 from the human pathogen , the primary aetiological agent of whooping cough, was determined and analysed. This plasmid carried a total of 46 ORFs: 44 ORFs corresponding to the genes in the conserved IncP-1 backbone, and 2 ORFs similar to the and genes with unknown function of the plant pathogen . Interestingly, pBP136 had no accessory genes carrying genetic traits such as antibiotic or mercury resistance and/or xenobiotic degradation. Moreover, pBP136 had only two of the genes () that have been reported to be important for the stability of IncP-1 plasmid in . Phylogenetic analysis of the Kle proteins revealed that the KleA and KleE of pBP136 were phylogenetically distant from those of the present IncP-1 plasmids. In contrast, IncC1 and KorC, encoded upstream and downstream of the genes respectively, and the replication-initiation protein, TrfA, were closely related to those of the IncP-1 ‘R751 group’. These results suggest that (i) pBP136 without any apparent accessory genes diverged early from an ancestor of the present IncP-1 plasmids, especially those of the R751 group, and (ii) the genes might be incorporated independently into the backbone region of the IncP-1 plasmids for their stable maintenance in various host cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29056-0
2006-12-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3477.html?itemId=/content/journal/micro/10.1099/mic.0.29056-0&mimeType=html&fmt=ahah

References

  1. Adamczyk, M. & Jagura-Burdzy, G. ( 2003; ). Spread and survival of promiscuous IncP-1 plasmids. Acta Biochim Pol 50, 425–453.
    [Google Scholar]
  2. Adamczyk, M., Dolowy, P., Jonczyk, M., Thomas, C. M. & Jagura-Burdzy, G. ( 2006; ). The kfrA gene is the first in a tricistronic operon required for survival of IncP-1 plasmid R751. Microbiology 152, 1621–1637.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  4. Antoine, R. & Locht, C. ( 1992; ). Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from gram-positive organisms. Mol Microbiol 6, 1785–1799.[CrossRef]
    [Google Scholar]
  5. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1987; ). Current Protocols in Molecular Biology. New York: Wiley.
  6. Bergstrom, C. T., Lipsitch, M. & Levin, B. R. ( 2000; ). Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics 155, 1505–1519.
    [Google Scholar]
  7. Chang, C. J., Garnier, M., Zreik, L., Rossetti, V. & Bové, J. M. ( 1993; ). Culture and serological detection of the xylem-limited bacterium causing citrus variegated chlorosis and its identification as a strain of Xylella fastidiosa. Curr Microbiol 27, 137–142.[CrossRef]
    [Google Scholar]
  8. Dennis, J. J. ( 2005; ). The evolution of IncP catabolic plasmids. Curr Opin Biotechnol 16, 291–298.[CrossRef]
    [Google Scholar]
  9. Ghigo, J.-M. ( 2001; ). Natural conjugative plasmids induce bacterial biofilm development. Nature 412, 442–445.[CrossRef]
    [Google Scholar]
  10. Graham, A. C. & Abruzzo, G. K. ( 1982; ). Occurrence and characterization of plasmids in field isolates of Bordetella bronchiseptica. Am J Vet Res 43, 1852–1855.
    [Google Scholar]
  11. Harada, K. M., Aso, Y., Hashimoto, W., Mikami, B. & Murata, K. ( 2006; ). Sequence and analysis of the 46.6-kb plasmid pA1 from Sphingomonas sp. A1 that corresponds to the typical IncP-1β plasmid backbone without any accessory gene. Plasmid 56, 11–23.[CrossRef]
    [Google Scholar]
  12. Hedges, R. W., Jacob, A. E. & Smith, J. T. ( 1974; ). Properties of an R factor from Bordetella bronchiseptica. J Gen Microbiol 84, 199–204.[CrossRef]
    [Google Scholar]
  13. Heuer, H., Szczepanowski, R., Schneiker, S., Pühler, A., Top, E. M. & Schlüter, A. ( 2004; ). The complete sequences of plasmids pB2 and pB3 provide evidence for a recent ancestor of the IncP-1β group without any accessory genes. Microbiology 150, 3591–3599.[CrossRef]
    [Google Scholar]
  14. Houard, S., Hackel, C., Herzog, A. & Bollen, A. ( 1989; ). Specific identification of Bordetella pertussis by the polymerase chain reaction. Res Microbiol 140, 477–487.[CrossRef]
    [Google Scholar]
  15. Imaizumi, A., Suzuki, Y., Ono, S., Sato, H. & Sato, Y. ( 1983; ). Effect of heptakis(2,6-O-dimethyl)beta-cyclodextrin on the production of pertussis toxin by Bordetella pertussis. Infect Immun 41, 1138–1143.
    [Google Scholar]
  16. Kodama, A., Kamachi, K., Horiuchi, Y., Konda, T. & Arakawa, Y. ( 2004; ). Antigenic divergence suggested by correlation between antigenic variation and pulsed-field gel electrophoresis profiles of Bordetella pertussis isolates in Japan. J Clin Microbiol 42, 5453–5457.[CrossRef]
    [Google Scholar]
  17. Lax, A. J. & Walker, C. A. ( 1986; ). Plasmids related to RSF1010 from Bordetella bronchiseptica. Plasmid 15, 210–216.[CrossRef]
    [Google Scholar]
  18. Li, W. B., Zreik, L., Fernandes, N. G., Miranda, V. S., Teixeria, D. C., Ayres, A. J., Garnier, M. & Bové, J. M. ( 1999; ). A triply cloned strain of Xylella fastidiosa multiplies and induces symptoms of citrus variegated chlorosis in sweet orange. Curr Microbiol 39, 106–108.[CrossRef]
    [Google Scholar]
  19. Martinez, B., Tomkins, J., Wackett, L. P., Wing, R. & Sadowski, M. J. ( 2001; ). Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183, 5684–5697.[CrossRef]
    [Google Scholar]
  20. Mooi, F. R., Hallander, H., Wirsing von König, C. H., Hoet, B. & Guiso, N. ( 2000; ). Epidemiological typing of Bordetella pertussis isolates: recommendations for a standard methodology. Eur J Clin Infect Dis 13, 174–181.
    [Google Scholar]
  21. Pansegrau, W., Lanka, E., Barth, P. T. & 7 other authors ( 1994; ). Complete nucleotide sequence of Birmingham IncPα plasmids compilation and comparative analysis. J Mol Biol 239, 623–663.[CrossRef]
    [Google Scholar]
  22. Schlüter, A., Heuer, H., Szczepanowski, R., Forney, L. J., Thomas, C. M., Pühler, A. & Top, E. M. ( 2003; ). The 64 508 bp IncP-1β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology 149, 3139–3153.[CrossRef]
    [Google Scholar]
  23. Schlüter, A., Heuer, H., Szczepanowski, R., Poler, S. M., Schneiker, S., Pühler, A. & Top, E. M. ( 2005; ). Plasmid pB8 is closely related to the prototype IncP-1β plasmid R751 but transfers poorly to Escherichia coli and carries a new transposon encoding a small multidrug resistance efflux protein. Plasmid 54, 135–148.[CrossRef]
    [Google Scholar]
  24. Shimizu, M., Kuninori, K., Inoue, M. & Mitsuhashi, S. ( 1981; ). Drug resistance and R plasmids in Bordetella bronchiseptica isolates from pigs. Microbiol Immunol 25, 773–786.[CrossRef]
    [Google Scholar]
  25. Shimpson, A. J., Reinach, F. C., Arruda, P. & 113 other authors ( 2000; ). The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa consortium of the organization for nucleotide sequencing and analysis. Nature 406, 151–157.[CrossRef]
    [Google Scholar]
  26. Smith, C. J., Coote, J. G. & Parton, R. ( 1986; ). R-plasmid-mediated chromosome mobilization in Bordetella pertussis. J Gen Microbiol 132, 2685–2692.
    [Google Scholar]
  27. Sota, M., Kawasaki, H. & Tsuda, M. ( 2003; ). Structure of haloacetate-catabolic IncP-1β plasmid pUO1 and genetic mobility of its residing haloacetate-catabolic transposon. J Bacteriol 185, 6741–6745.[CrossRef]
    [Google Scholar]
  28. Speakman, A. J., Binns, S. H., Osborn, A. M., Corkill, J. E., Kariuki, S., Saunders, J. R., Dawson, S., Graskell, R. M. & Hart, C. A. ( 1997; ). Characterization of antibiotic resistance plasmids from Bordetella bronchiseptica. J Antimicrob Chemother 40, 811–816.[CrossRef]
    [Google Scholar]
  29. Tauch, A., Schlüter, A., Bischott, N., Goesmann, A., Meyer, F. & Pühler, A. ( 2003; ). The 79,370-bp conjugative plasmid pB4 consists of an IncP-1β backbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene bla NPS-1, and a tripartite antibiotic efflux system of the resistance-nodulation-division family. Mol Gen Genomics 268, 570–584.
    [Google Scholar]
  30. Tennstedt, T., Szczepanowski, R., Krahan, I., Pühler, A. & Schlüter, A. ( 2005; ). Sequence of the 68,869 bp IncP-α plasmid pTB11 from a waste-water treatment plant reveals a highly conserved backbone, a Tn402-like integron and other transposable elements. Plasmid 53, 218–238.[CrossRef]
    [Google Scholar]
  31. Terakado, N. & Mitsuhashi, S. ( 1974; ). Properties of R factors from Bordetella bronchiseptica. Antimicrob Agents Chemother 6, 836–840.[CrossRef]
    [Google Scholar]
  32. Terakado, N., Azechi, H., Ninomiya, K. & Shimizu, T. ( 1973; ). Demonstration of R factors in Bordetella bronchiseptica isolated from pigs. Antimicrob Agents Chemther 3, 555–558.[CrossRef]
    [Google Scholar]
  33. Thomas, C. M. ( 2000; ). Paradigms of plasmid organization. Mol Microbiol 37, 485–491.
    [Google Scholar]
  34. Thomas, C. M. & Smith, C. A. ( 1987; ). Incompatibility group P plasmids: genetics, evolution, and use in genetic manipulation. Annu Rev Microbiol 41, 77–101.[CrossRef]
    [Google Scholar]
  35. Thorsted, P. B., Macartney, D. P., Akhtar, P. & 9 other authors ( 1998; ). Complete sequence of the IncPβ plasmid R751: implications for evolution and organization of the IncP backbone. J Mol Biol 282, 969–990.[CrossRef]
    [Google Scholar]
  36. Top, E. M. & Springael, D. ( 2003; ). The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14, 262–269.[CrossRef]
    [Google Scholar]
  37. Trefault, N., De Ia Iglesis, R., Molina, A. M., Manzano, M., Ledger, T., Pérez-Pantoja, D., Sánchez, M. A., Stuardo, M. & González, B. ( 2004; ). Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol 6, 655–668.[CrossRef]
    [Google Scholar]
  38. Vedler, E., Vahter, M. & Heinaru, A. ( 2004; ). The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J Bacteriol 186, 7161–7174.[CrossRef]
    [Google Scholar]
  39. Weiss, A. A. & Falkow, S. ( 1982; ). Plasmid transfer to Bordetella pertussis: conjugation and transformation. J Bacteriol 152, 549–552.
    [Google Scholar]
  40. Wilson, J. W., Sia, E. A. & Figurski, D. H. ( 1997; ). The kilE locus of promiscuous IncPα plasmid RK2 is required for stable maintenance in Pseudomonas aeruginosa. J Bacteriol 179, 2339–2347.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29056-0
Loading
/content/journal/micro/10.1099/mic.0.29056-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 3477 - 3484

Localization and predicted functions of the ORFs of pBP136 [ Excel file] (34 kb)



EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error