1887

Abstract

To analyse the role of trehalose as stress protectant and carbon storage compound in the grey mould fungus , mutants defective in trehalose-6-phosphate synthase (TPS1) and neutral trehalase (TRE1) were constructed. The Δ mutant was unable to synthesize trehalose, whereas the Δ mutant showed elevated trehalose levels compared to the wild-type and was unable to mobilize trehalose during conidial germination. Both mutants showed normal vegetative growth and were not affected in plant pathogenicity. Growth of the Δ mutant was more heat sensitive compared to the wild-type. Similarly, Δ conidia showed a shorter survival under heat stress, and their viability at moderate temperatures was strongly reduced. In germinating wild-type conidia, rapid trehalose degradation occurred only when germination was induced in the presence of nutrients. In contrast, little trehalose breakdown was observed during germination on hydrophobic surfaces in water. Here, addition of cAMP to conidia induced trehalose mobilization and accelerated the germination process, probably by activation of TRE1. In accordance with these data, both mutants showed germination defects only in the presence of sugars but not on hydrophobic surfaces in the absence of nutrients. The data indicate that in trehalose serves as a stress protectant, and also as a significant but not essential carbon source for germination when external nutrients are low. In addition, evidence was obtained that trehalose 6-phosphate plays a role as a regulator of glycolysis during germination.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29044-0
2006-09-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2625.html?itemId=/content/journal/micro/10.1099/mic.0.29044-0&mimeType=html&fmt=ahah

References

  1. Amaral, F. C., Van Dijck, P. & Thevelein, J. M. ( 1997; ). Molecular cloning of the neutral trehalase gene from Kluyveromyces lactis and the distinction between neutral and acid trehalases. Arch Microbiol 167, 202–208.[CrossRef]
    [Google Scholar]
  2. Arguelles, J. C. ( 2000; ). Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174, 217–224.[CrossRef]
    [Google Scholar]
  3. Bell, W., Sun, W., Hohmann, S., Wera, S., Reinders, A., De Virgilio, C., Wiemken, A. & Thevelein, J. M. ( 1998; ). Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem 273, 33311–33319.[CrossRef]
    [Google Scholar]
  4. de Almeida, F. M., Lucio, A. K., Polizeli, M. L., Jorge, J. A. & Terenzi, H. F. ( 1997; ). Function and regulation of the acid and neutral trehalases of Mucor rouxii. FEMS Microbiol Lett 155, 73–77.[CrossRef]
    [Google Scholar]
  5. de Jong, J. C., McCormack, B. J., Smirnoff, N. & Talbot, N. J. ( 1997; ). Glycerol generates turgor in rice blast. Nature 389, 244–245.[CrossRef]
    [Google Scholar]
  6. d'Enfert, C. ( 1997; ). Fungal spore germination: insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genet Biol 21, 163–172.[CrossRef]
    [Google Scholar]
  7. d'Enfert, C. & Fontaine, T. ( 1997; ). Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth and trehalose. Mol Microbiol 24, 203–216.[CrossRef]
    [Google Scholar]
  8. d'Enfert, C., Bonini, B. M., Zapella, P. D. A., Fontaine, T., da Silva, A. M. & Terenzi, H. F. ( 1999; ). Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol Microbiol 32, 471–483.[CrossRef]
    [Google Scholar]
  9. de Pinho, C. A., de Lourdes, M., Polizeli, T. M., Jorge, J. A. & Terenzi, H. F. ( 2001; ). Mobilisation of trehalose in mutants of the cyclic AMP signalling pathway, cr-1 (CRISP-1) and mcb (microcycle conidiation), of Neurospora crassa. FEMS Microbiol Lett 199, 85–89.[CrossRef]
    [Google Scholar]
  10. de Waard, M. A., Andrade, A. C., Hayashi, K., Schoonbeek, H., Stergiopoulus, I. & Zwiers, L.-H. ( 2006; ). Impact of fungal transporters on fungicide sensitivity, multidrug resistance and virulence. Pest Man Sci 62, 195–207.[CrossRef]
    [Google Scholar]
  11. Doehlemann, G., Molitor, F. & Hahn, M. ( 2005; ). Molecular and functional characterization of a fructose specific transporter from the gray mould fungus Botrytis cinerea. Fungal Genet Biol 42, 601–610.[CrossRef]
    [Google Scholar]
  12. Doehlemann, G., Berndt, P. & Hahn, M. ( 2006; ). Different signalling pathways involving a Gα protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol 59, 821–835.[CrossRef]
    [Google Scholar]
  13. Eastmond, P. J. & Graham, A. ( 2003; ). Trehalose metabolism: a regulatory role for trehalose-6-phosphate? Curr Opin Plant Biol 6, 231–235.[CrossRef]
    [Google Scholar]
  14. Elbein, A. D., Pan, Y. T., Pastuszak, I. & Carrol, D. ( 2003; ). New insights on trehalose: a multifunctional molecule. Glycobiology 12, 17R–27R.
    [Google Scholar]
  15. Fillinger, S., Chaveroche, M.-K., van Dijck, P., de Vries, R., Ruijter, G., Thevelein, J. & d'Enfert, C. ( 2001; ). Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147, 1851–1862.
    [Google Scholar]
  16. Foster, A. J., Jenkinson, J. M. & Talbot, N. J. ( 2003; ). Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J 22, 225–235.[CrossRef]
    [Google Scholar]
  17. Gancedo, C. & Flores, C. ( 2004; ). The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res 4, 351–359.[CrossRef]
    [Google Scholar]
  18. Hayashi, K., Schoonbeck, H.-J. & de Waard, M. A. ( 2002; ). Bcmfs1, a novel major facilitator superfamily transporter from Botryits cinerea, provides tolerance towards the natural toxic compounds camptothecin and cercosporin and towards fungicides. Appl Environ Microbiol 68, 4996–5004.[CrossRef]
    [Google Scholar]
  19. Hounsa, C. G., Brandt, E. V., Thevelein, J., Hohmann, S. & Prior, B. A. ( 1998; ). Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144, 671–680.[CrossRef]
    [Google Scholar]
  20. Jarvis, W. R. ( 1977; ). Botryotinia and Botrytis species. Taxonomy and pathogenicity. A guide to the literature. Monograph no. 14. Ottawa: Research Branch, Canada Department of Agriculture.
  21. Kopp, M., Müller, H. & Holzer, H. ( 1993; ). Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J Biol Chem 268, 4766–4774.
    [Google Scholar]
  22. Lafon, A., Seo, J. A., Han, K. H., Yu, J. H. & d'Enfert, C. ( 2005; ). The heterotrimeric G-protein GanB (α)-SfaD (β)-GpgA(γ) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans. Genetics 171, 71–80.[CrossRef]
    [Google Scholar]
  23. Möller, E. M., Bahnweg, G., Sandermann, H. & Geiger, H. H. ( 1992; ). A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissue. Nucleic Acids Res 20, 6115–6116.[CrossRef]
    [Google Scholar]
  24. Pereira, C., Lins, R. D., Chandrasekhar, I., Freitas, L. C. & Hünenberger, P. H. ( 2004; ). Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. Biophys J 86, 2273–2285.[CrossRef]
    [Google Scholar]
  25. Prins, T. W., Tudzynski, P., von Tiedemann, A., Tudzynski, B., ten Have, A., Hansen, M., Tenberge, K. & van Kan, J. A. L. ( 2000; ). Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In Fungal Pathology, pp. 33–64. Edited by J. W. Kronstad. Dordrecht: Kluwer Academic Press.
  26. Reis, H., Pfiffi, S. & Hahn, M. ( 2005; ). Molecular and functional characterization of a secreted lipase from Botrytis cinerea. Mol Plant Pathol 6, 257–267.[CrossRef]
    [Google Scholar]
  27. Rittenhouse, J., Harrsch, P. B., Kim, J. N. & Markus, F. ( 1986; ). Amino acid sequence of the phosphorylation site of yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase. J Biol Chem 261, 3939–3943.
    [Google Scholar]
  28. Rolke, Y., Liu, S., Quidde, T. & 7 other authors ( 2004; ). Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol 5, 17–27.[CrossRef]
    [Google Scholar]
  29. Ruijter, G. J. G., Bax, M., Patel, H., Flitter, S. J., van de Vondervoort, P. J. I., de Vries, R. P., van Kuyk, P. A. & Visser, J. ( 2003; ). Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryot Cell 2, 690–698.[CrossRef]
    [Google Scholar]
  30. Schmitt, J. C. & Brody, S. ( 1976; ). Biochemical genetics of Neurospora crassa conidial germination. Bacteriol Rev 40, 1–41.
    [Google Scholar]
  31. Skibinsky, A., Venable, R. M. & Pastor, R. W. ( 2005; ). A molecular dynamics study of the response of lipid bilayers and monolayers to trehalose. Biophys J 89, 4111–4121.[CrossRef]
    [Google Scholar]
  32. Singer, M. A. & Lindquist, S. ( 1998; ). Thermotolerance in Saccharomyces cerevisiae: the yin and yang of trehalose. Trends Biotechnol 16, 460–468.[CrossRef]
    [Google Scholar]
  33. Souza, A. C., De Mesquita, J. F., Panek, A. D., Silva, J. T. & Paschoalin, V. M. F. ( 2002; ). Evidence for a modulation of neutral trehalase activity by Ca2+ and cAMP signaling pathways in Saccharomyces cerevisiae. Braz J Med Biol Res 35, 11–16.
    [Google Scholar]
  34. Thevelein, J. M. ( 1996; ). Regulation of trehalose metabolism and its relevance to cell growth and function. In The Mycota, vol. 3, Biochemistry and Molecular Biology, pp. 395–420. Edited by R. Brambl & G. A. Marzluf. Berlin: Springer.
  35. Thevelein, J. M. & Hohmann, S. ( 1995; ). Trehalose synthase: guard to the gate of glycolysis in yeast? Trends Biol Sci 20, 3–9.[CrossRef]
    [Google Scholar]
  36. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29044-0
Loading
/content/journal/micro/10.1099/mic.0.29044-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error