1887

Abstract

The biosynthetic gene cluster for the 17 aa peptide antibiotic enduracidin has been cloned and sequenced from ATCC 21013. The 84 kb gene cluster contains 25 ORFs and is located within a 116 kb genetic locus that was fully sequenced. Targeted disruption of non-ribosomal peptide synthetase (NRPS) genes in the cluster abolished enduracidin production and confirmed function. The cluster includes four genes, , encoding two-, seven-, eight- and one-module NRPSs, respectively, and includes unique modules for the incorporation of citrulline and enduracididine. The NRPS organization generally follows the collinearity principle, and starts with a condensation domain (C domain) similar to those found in other lipopeptide systems for the coupling of an acyl group to the starting amino acid. The sixth module of EndB, corresponding to Thr, is missing an adenylation domain (A domain) and this module is presumed to be loaded by the single module protein EndD. The most striking feature of the NRPS organization is the lack of epimerization domains (E domains) in light of the fact that the product has seven -amino acid residues. Sequence analysis reveals that C domains following modules corresponding to -amino acids belong to a unique subset of C domains able to catalyse both epimerization and condensation reactions. Other genes directing lipid modification and activation, and formation of the non-proteinogenic amino acids 4-hydroxyphenylglycine and enduracididine are readily identified, as are genes possibly involved in regulation of antibiotic biosynthesis and export. These findings provide the basis to further genetically manipulate and improve lipodepsipeptide antibiotics via combinatorial and chemical methods.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29043-0
2006-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/2969.html?itemId=/content/journal/micro/10.1099/mic.0.29043-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Balibar, C. J., Vaillancourt, F. H. & Walsh, C. T. ( 2005; ). Generation of d-amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chem Biol 12, 1189–1200.[CrossRef]
    [Google Scholar]
  3. Barrett, J. ( 2005; ). Recent developments in glycopeptide antibacterials. Curr Opin Invest Drugs 6, 781–790.
    [Google Scholar]
  4. Bierman, M. R., Logan, R., O'Brien, K., Seno, E. T., Rao, R. N. & Shoner, B. E. ( 1992; ). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43–49.[CrossRef]
    [Google Scholar]
  5. Challis, G. L., Ravel, J. & Townsend, C. A. ( 2000; ). Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7, 211–224.[CrossRef]
    [Google Scholar]
  6. Chiu, H. T., Hubbard, B. K., Shah, A. N., Eide, J., Fredenburg, R. A., Walsh, C. T. & Khosla, C. ( 2001; ). Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster. Proc Natl Acad Sci U S A 98, 8548–8553.[CrossRef]
    [Google Scholar]
  7. Choroba, O. W., Williams, D. H. & Spencer, J. B. ( 2000; ). Biosynthesis of the vancomycin group of antibiotics: involvement of an unusual dioxygenase in the pathway to (S)-4-hydroxyphenylglycine. J Am Chem Soc 122, 5389–5390.[CrossRef]
    [Google Scholar]
  8. Cudic, P., Kranz, J. K., Behenna, D. C., Kruger, R. G., Tadesse, H., Wand, A. J., Veklich, Y. I., Weisel, J. W. & McCafferty, D. G. ( 2002; ). Complexation of peptidoglycan intermediates by the lipoglycodepsipeptide antibiotic ramoplanin: minimal structural requirements for intermolecular complexation and fibril formation. Proc Natl Acad Sci U S A 99, 7384–7389.[CrossRef]
    [Google Scholar]
  9. Demain, A. L. ( 1998; ). Induction of microbial secondary metabolism. Int Microbiol 1, 259–264.
    [Google Scholar]
  10. Dorrestein, P. C., Yeh, E., Garneau-Tsodikova, S., Kelleher, N. L. & Walsh, C. T. ( 2005; ). Dichlorination of a pyrrolyl-S-carrier protein by FADH2-dependent halogenase PltA during pyoluteorin biosynthesis. Proc Natl Acad Sci U S A 102, 13843–13848.[CrossRef]
    [Google Scholar]
  11. Duitman, E. H., Hamoen, L. W., Rembold, M. & 10 other authors ( 1999; ). The mycosubtilin synthetase of Bacillus subtilis ATCC 6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci U S A 96, 13294–13299.[CrossRef]
    [Google Scholar]
  12. Fang, X., Tiyanont, K., Zhang, Y., Vanner, J., Boger, D. & Walker, S. ( 2006; ). The mechanism of action of ramoplanin and enduracidin. Mol BioSyst 2, 69–76.[CrossRef]
    [Google Scholar]
  13. Goto, S., Kuwahara, S., Okubo, N. & Zenyoji, H. ( 1968; ). In vitro and in vivo evaluation of enduracidin, a new peptide antibiotic substance. J Antibiot 21, 119–125.[CrossRef]
    [Google Scholar]
  14. Guenzi, E., Galli, G., Grgurina, I., Gross, D. C. & Grandi, G. ( 1998; ). Characterization of the syringomycin synthetase gene cluster. A link between prokaryotic and eukaryotic peptide synthetases. J Biol Chem 273, 32857–32863.[CrossRef]
    [Google Scholar]
  15. Haltli, B., Tan, Y., Magarvey, N. A., Wagenaar, M., Yin, X., Greenstein, M., Hucul, J. A. & Zabriskie, T. M. ( 2005; ). Investigating beta-hydroxyenduracididine formation in the biosynthesis of the mannopeptimycins. Chem Biol 12, 1163–1168.[CrossRef]
    [Google Scholar]
  16. Hatano, K., Nogami, I., Higashide, E. & Kishi, T. ( 1984; ). Biosynthesis of enduracidin: origin of enduracididine and other amino acids. Agric Biol Chem 48, 1503–1508.[CrossRef]
    [Google Scholar]
  17. He, H., Williamson, R. T., Shen, B., Graziani, E. I., Yang, H. Y., Sakya, S. M., Petersen, P. J. & Carter, G. T. ( 2002; ). Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. J Am Chem Soc 124, 9729–9736.[CrossRef]
    [Google Scholar]
  18. Heinzelmann, E., Berger, S., Muller, C., Hartner, T., Poralla, K., Wohlleben, W. & Schwartz, D. ( 2005; ). An acyl-CoA dehydrogenase is involved in the formation of the Δcis3 double bond in the acyl residue of the lipopeptide antibiotic friulimicin in Actinoplanes friuliensis. Microbiology 151, 1963–1974.[CrossRef]
    [Google Scholar]
  19. Higashide, E., Hatano, K., Shibata, M. & Nakazawa, K. ( 1968; ). Enduracidin, a new antibiotic. I. Streptomyces fungicidicus No. B5477, an enduracidin producing organism. J Antibiot 21, 126–137.[CrossRef]
    [Google Scholar]
  20. Hojati, Z., Milne, C., Harvey, B. & 9 other authors ( 2002; ). Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem Biol 9, 1175–1187.[CrossRef]
    [Google Scholar]
  21. Hori, M., Iwasaki, H., Horii, S., Yoshida, I. & Hongo, T. ( 1973; ). Enduracidin, a new antibiotic. VII. Primary structure of the peptide moiety. Chem Pharm Bull 21, 1175–1183.[CrossRef]
    [Google Scholar]
  22. Hubbard, B. K., Thomas, M. G. & Walsh, C. T. ( 2000; ). Biosynthesis of l-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics. Chem Biol 7, 931–942.[CrossRef]
    [Google Scholar]
  23. Ishikawa, J., Yamashita, A., Mikami, Y., Hoshino, Y., Kurita, H., Hotta, K., Shiba, T. & Hattori, M. ( 2004; ). The complete genomic sequence of Nocardia farcinica IFM 10152. Proc Natl Acad Sci U S A 101, 14925–14930.[CrossRef]
    [Google Scholar]
  24. Iwasaki, H., Horii, S., Asai, M., Mizuno, K., Ueyanagi, J. & Miyake, A. ( 1973; ). Enduracidin, a new antibiotic. VIII. Structures of enduracidin A and B. Chem Pharm Bull 21, 1184–1191.[CrossRef]
    [Google Scholar]
  25. Ju, J., Ozanick, S. G., Shen, B. & Thomas, M. G. ( 2004; ). Conversion of (2S)-arginine to (2S,3R)-capreomycidine by VioC and VioD from the viomycin biosynthetic pathway of Streptomyces sp. strain ATCC 11861. Chembiochem 5, 1281–1285.[CrossRef]
    [Google Scholar]
  26. Kawakami, M., Nagai, Y., Fujii, T. & Mitsuhashi, S. ( 1971; ). Anti-microbial activities of enduracidin (enramycin) in vitro and in vivo. J Antibiot 24, 583–586.[CrossRef]
    [Google Scholar]
  27. Keller, S., Wage, T., Hohaus, K., Holzer, M., Eichhorn, E. & van Pee, K. H. ( 2000; ). Purification and partial characterization of tryptophan 7-halogenase (PrnA) from Pseudomonas fluorescens. Angew Chem Int Ed Engl 39, 2300–2302.[CrossRef]
    [Google Scholar]
  28. Kieser, T., Bibb, M. J., Buttner, M. J., Charter, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces Genetics. Norwich: John Innes Centre.
  29. Komatsuzawa, H., Suzuki, J., Sugai, M., Miyake, Y. & Suginaka, H. ( 1994; ). Effect of combination of oxacillin and non-beta-lactam antibiotics on methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 33, 1155–1163.[CrossRef]
    [Google Scholar]
  30. Li, T. L., Huang, F., Haydock, S. F., Mironenko, T., Leadlay, P. F. & Spencer, J. B. ( 2004; ). Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase. Chem Biol 11, 107–119.
    [Google Scholar]
  31. Linne, U., Doekel, S. & Marahiel, M. A. ( 2001; ). Portability of epimerization domain and role of peptidyl carrier protein on epimerization activity in nonribosomal peptide synthetases. Biochemistry 40, 15824–15834.[CrossRef]
    [Google Scholar]
  32. Mangili, A., Bica, I., Snydman, D. R. & Hamer, D. H. ( 2005; ). Daptomycin-resistant, methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 40, 1058–1060.[CrossRef]
    [Google Scholar]
  33. Marahiel, M. A., Stachelhaus, T. & Mootz, H. D. ( 1997; ). Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97, 2651–2674.[CrossRef]
    [Google Scholar]
  34. Marshall, C. G., Lessard, I. A., Park, I. & Wright, G. D. ( 1998; ). Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob Agents Chemother 42, 2215–2220.
    [Google Scholar]
  35. McCafferty, D. G., Cudic, P., Frankel, B. A., Barkallah, S., Kruger, R. G. & Li, W. ( 2002; ). Chemistry and biology of the ramoplanin family of peptide antibiotics. Biopolymers 66, 261–284.[CrossRef]
    [Google Scholar]
  36. Meka, V. G., Pillai, S. K., Sakoulas, G. & 7 other authors ( 2004; ). Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J Infect Dis 190, 311–317.[CrossRef]
    [Google Scholar]
  37. Miao, V., Coeffet-LeGal, M. F., Brian, P. & 10 other authors ( 2005; ). Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151, 1507–1523.[CrossRef]
    [Google Scholar]
  38. Miao, V., Brost, R., Chapple, J., She, K., Gal, M. F. & Baltz, R. H. ( 2006; ). The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae. J Ind Microbiol Biotechnol 33, 129–140.[CrossRef]
    [Google Scholar]
  39. Paulsen, I. T., Press, C. M., Ravel, J. & 26 other authors ( 2005; ). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23, 873–878.[CrossRef]
    [Google Scholar]
  40. Peromet, M., Schoutens, E. & Yourassowsky, E. ( 1973; ). Clinical and microbiological study of enduracidin in infections due to methicillin-resistant strains of Staphylococcus aureus. Chemotherapy 19, 53–61.[CrossRef]
    [Google Scholar]
  41. Pootoolal, J., Thomas, M. G., Marshall, C. G., Neu, J. M., Hubbard, B. K., Walsh, C. T. & Wright, G. D. ( 2002; ). Assembling the glycopeptide antibiotic scaffold: the biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Proc Natl Acad Sci U S A 99, 8962–8967.[CrossRef]
    [Google Scholar]
  42. Puk, O., Huber, P., Bischoff, D., Recktenwald, J., Jung, G., Sussmuth, R. D., van Pee, K. H., Wohlleben, W. & Pelzer, S. ( 2002; ). Glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908: function of a halogenase and a haloperoxidase/perhydrolase. Chem Biol 9, 225–235.[CrossRef]
    [Google Scholar]
  43. Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W. & Huson, D. H. ( 2005; ). Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33, 5799–5808.[CrossRef]
    [Google Scholar]
  44. Recktenwald, J., Shawky, R., Puk, O., Pfennig, F., Keller, U., Wohlleben, W. & Pelzer, S. ( 2002; ). Nonribosomal biosynthesis of vancomycin-type antibiotics: a heptapeptide backbone and eight peptide synthetase modules. Microbiology 148, 1105–1118.
    [Google Scholar]
  45. Roongsawang, N., Hase, K., Haruki, M., Imanaka, T., Morikawa, M. & Kanaya, S. ( 2003; ). Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem Biol 10, 869–880.[CrossRef]
    [Google Scholar]
  46. Sambrook, J. & Russell, D. V. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  47. Scholz-Schroeder, B. K., Soule, J. D. & Gross, D. C. ( 2003; ). The sypA, sypS, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D. Mol Plant Microbe Interact 16, 271–280.[CrossRef]
    [Google Scholar]
  48. Sosio, M., Stinchi, S., Beltrametti, F., Lazzarini, A. & Donadio, S. ( 2003; ). The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species. Chem Biol 10, 541–549.[CrossRef]
    [Google Scholar]
  49. Stachelhaus, T., Mootz, H. D. & Marahiel, M. A. ( 1999; ). The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6, 493–505.[CrossRef]
    [Google Scholar]
  50. Tenover, F. C. & McDonald, L. C. ( 2005; ). Vancomycin-resistant staphylococci and enterococci: epidemiology and control. Curr Opin Infect Dis 18, 300–305.[CrossRef]
    [Google Scholar]
  51. Trauger, J. W. & Walsh, C. T. ( 2000; ). Heterologous expression in Escherichia coli of the first module of the nonribosomal peptide synthetase for chloroeremomycin, a vancomycin-type glycopeptide antibiotic. Proc Natl Acad Sci U S A 97, 3112–3117.[CrossRef]
    [Google Scholar]
  52. Tsiodras, S., Gold, H. S., Sakoulas, G., Eliopoulos, G. M., Wennersten, C., Venkataraman, L., Moellering, R. C. & Ferraro, M. J. ( 2001; ). Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 358, 207–208.[CrossRef]
    [Google Scholar]
  53. Tsuchiya, K., Kondo, M., Oishi, T. & Yamazaki, I. ( 1968; ). Enduracidin, a new antibiotic. 3. In vitro and in vivo antimicrobial activity. J Antibiot 21, 147–153.[CrossRef]
    [Google Scholar]
  54. Vaillancourt, F. H., Yeh, E., Vosburg, D. A., O'Connor, S. E. & Walsh, C. T. ( 2005; ). Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature 436, 1191–1194.[CrossRef]
    [Google Scholar]
  55. van Wageningen, A. M., Kirkpatrick, P. N., Williams, D. H., Harris, B. R., Kershaw, J. K., Lennard, N. J., Jones, M., Jones, S. J. & Solenberg, P. J. ( 1998; ). Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chem Biol 5, 155–162.[CrossRef]
    [Google Scholar]
  56. Walker, S., Chen, L., Hu, Y., Rew, Y., Shin, D. & Boger, D. L. ( 2005; ). Chemistry and biology of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. Chem Rev 105, 449–476.[CrossRef]
    [Google Scholar]
  57. Wright, F. & Bibb, M. J. ( 1992; ). Codon usage in the G+C-rich Streptomyces genome. Gene 113, 55–65.[CrossRef]
    [Google Scholar]
  58. Yeh, E., Garneau, S. & Walsh, C. T. ( 2005; ). Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. Proc Natl Acad Sci U S A 102, 3960–3965.[CrossRef]
    [Google Scholar]
  59. Yin, X. & Zabriskie, T. M. ( 2004; ). VioC is a non-heme iron, α-ketoglutarate dependent oxygenase that catalyzes the formation of 3S-hydroxy-l-arginine during viomycin biosynthesis. Chembiochem 5, 1274–1277.[CrossRef]
    [Google Scholar]
  60. Yin, X., O'Hare, T., Gould, S. J. & Zabriskie, T. M. ( 2003; ). Identification and cloning of genes encoding viomycin biosynthesis from Streptomyces vinaceus and evidence for involvement of a rare oxygenase. Gene 312, 215–224.[CrossRef]
    [Google Scholar]
  61. Yin, X., McPhail, K. L., Kim, K. J. & Zabriskie, T. M. ( 2004; ). Formation of the nonproteinogenic amino acid 2S,3R-capreomycidine by VioD from the viomycin biosynthesis pathway. Chembiochem 5, 1278–1281.[CrossRef]
    [Google Scholar]
  62. Yourassowsky, E. & Monsieur, R. ( 1972; ). In vitro and in vivo activity of enduracidin on Staphylococcus aureus. Chemotherapy 17, 182–187.[CrossRef]
    [Google Scholar]
  63. Zinner, S. H. ( 2005; ). The search for new antimicrobials: why we need new options. Expert Rev Anti Infect Ther 3, 907–913.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29043-0
Loading
/content/journal/micro/10.1099/mic.0.29043-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error