1887

Abstract

contains one repellent and two class I hydrophobin genes in its genome. The repellent gene has been described previously. It encodes 11 secreted repellent peptides that result from the cleavage of a precursor protein at KEX2 recognition sites. The hydrophobin gene encodes a typical class I hydrophobin of 117 aa, while encodes a hydrophobin that is preceded by 17 repeat sequences. These repeats are separated, like the repellent peptides, by KEX2 recognition sites. Gene , but not , was shown to be expressed in a cross of two compatible wild-type strains, suggesting a role of the former hydrophobin gene in aerial hyphae formation. Indeed, aerial hyphae formation was reduced in a Δ cross. However, the reduction in aerial hyphae formation was much more dramatic in the Δ cross. Moreover, colonies of the Δ cross were completely wettable, while surface hydrophobicity was unaffected and only slightly reduced in the Δ and the ΔΔ cross, respectively. It was also shown that the repellents and not the hydrophobins are involved in attachment of hyphae to hydrophobic Teflon. Deleting either or both hydrophobin genes in the Δ strains did not further affect aerial hyphae formation, surface hydrophobicity and attachment. From these data it is concluded that hydrophobins of have been functionally replaced, at least partially, by repellents.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29034-0
2006-12-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3607.html?itemId=/content/journal/micro/10.1099/mic.0.29034-0&mimeType=html&fmt=ahah

References

  1. Banuett, F. ( 1992; ). Ustilago maydis, the delightful blight. Trends Genet 8, 174–180.[CrossRef]
    [Google Scholar]
  2. Banuett, F. & Herskowitz, I. ( 1988; ). Ustilago maydis, smut of maize. In Genetics of Plant Pathogenic Fungi: Advances in Plant Pathology, pp. 427–455. Edited by G. S. Sidhu. London: Academic Press.
  3. Banuett, F. & Herskowitz, I. ( 1989; ). Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci U S A 86, 5878–5882.[CrossRef]
    [Google Scholar]
  4. Bohlmann, R. ( 1996; ). Isolierung und Charakterisierung von Filamentspezifisch Exprimierten Genen aus Ustilago maydis. PhD thesis, Munich: Institute for Genetics, Ludwig-Maximiliaans University.
  5. Bölker, M., Urban, M. & Kahmann, R. ( 1992; ). The a mating type locus of U. maydis specifies cell signaling components. Cell 68, 441–450.[CrossRef]
    [Google Scholar]
  6. Brachmann, A., Weinzierl, G., Kämper, J. & Kahmann, R. ( 2001; ). Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42, 1047–1063.[CrossRef]
    [Google Scholar]
  7. Brachmann, A., König, J., Julius, C. & Feldbrugge, M. ( 2004; ). A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol Genet Genomics 272, 216–226.
    [Google Scholar]
  8. Christensen, J. J. ( 1963; ). Corn smut caused by Ustilago maydis. Am Soc Phytopathol Soc Monogr 2.
    [Google Scholar]
  9. de Vries, O. M. H., Fekkes, M. P., Wösten, H. A. B. & Wessels, J. G. H. ( 1993; ). Insoluble hydrophobin complexes in the walls of Schizophyllum commune and other filamentous fungi. Arch Microbiol 159, 330–335.[CrossRef]
    [Google Scholar]
  10. Gillissen, B., Bergemann, J., Sandmann, C., Schroeer, B., Bölker, M. & Kahmann, R. ( 1992; ). A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68, 647–657.[CrossRef]
    [Google Scholar]
  11. Hoffman, C. S. & Winston, F. ( 1987; ). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267–272.[CrossRef]
    [Google Scholar]
  12. Kämper, J., Reichmann, M., Romeis, T., Bölker, M. & Kahmann, R. ( 1995; ). Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81, 73–83.[CrossRef]
    [Google Scholar]
  13. Romeis, T., Brachmann, A., Kahmann, R. & Kämper, J. ( 2000; ). Identification of a target gene for the bE-bW homeodomain protein complex in Ustilago maydis. Mol Microbiol 37, 54–66.[CrossRef]
    [Google Scholar]
  14. Talbot, N. J., Kershaw, M. J., Wakley, G. E., De Vries, O. M. H., Wessels, J. G. H. & Hamer, J. E. ( 1996; ). MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8, 985–999.[CrossRef]
    [Google Scholar]
  15. van Wetter, M. A., Schuren, F. H. J., Schuurs, T. A. & Wessels, J. G. H. ( 1996; ). Targeted mutation of the SC3 hydrophobin gene of Schizophyllum commune affects formation of aerial hyphae. FEMS Microbiol Lett 140, 265–269.
    [Google Scholar]
  16. Wessels, J. G. H., De Vries, O. M. H., Ásgeirsdóttir, S. A. & Schuren, F. H. J. ( 1991; ). Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum commune. Plant Cell 3, 793–799.[CrossRef]
    [Google Scholar]
  17. Wessels, J. G. H., Ásgeirsdóttir, S. A., de Vries, O. M. H., Lugones, L. G., Scheer, J. M. J., Schuren, F. H. J., Schuurs, T. A., van Wetter, M.-A. & Wösten, H. A. B. ( 1995; ). Genetic regulation of emergent growth in Schizophyllum commune. Can J Bot 73, S273–S281.[CrossRef]
    [Google Scholar]
  18. Wösten, H. A. B. ( 2001; ). Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55, 625–646.[CrossRef]
    [Google Scholar]
  19. Wösten, H. A. B., Schuren, F. H. J. & Wessels, J. G. H. ( 1994a; ). Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J 13, 5848–5854.
    [Google Scholar]
  20. Wösten, H. A. B., Ásgeirsdóttir, S. A., Krook, J. H., Drenth, J. H. & Wessels, J. G. ( 1994b; ). The fungal hydrophobin Sc3p self-assembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic rodlet layer. Eur J Cell Biol 63, 122–129.
    [Google Scholar]
  21. Wösten, H. A. B., Bohlmann, R., Eckerskorn, C., Lottspeich, F., Bolker, M. & Kahmann, R. ( 1996; ). A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in Ustilago maydis. EMBO J 15, 4274–4281.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29034-0
Loading
/content/journal/micro/10.1099/mic.0.29034-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error