1887

Abstract

The production of virulence factors is under the control of complex regulatory circuits. Most studies aimed at defining these regulatory networks have focused on derivatives of the strain NCTC 8325, most notably RN6390. However, all NCTC 8325 derivatives, including RN6390, possess an 11 bp deletion in . This deletion renders NCTC 8325 derivatives naturally sigma-factor-B deficient. Recent studies have shown that RN6390 is also deficient, in comparison to clinical isolates, with respect to biofilm formation, a process which is important for both pathogenesis and antimicrobial resistance. Based on these considerations, the authors carried out genome-scale transcriptional profiling, comparing RN6390 with the virulent -positive clinical isolate UAMS-1. The results revealed significant genome-wide differences in expression patterns between RN6390 and UAMS-1, and suggested that the overall transcriptional profile of UAMS-1 is geared toward expression of factors that promote colonization and biofilm formation. In contrast, the transcriptional profile of RN6390 was heavily influenced by RNAIII expression, resulting in a phenotype characterized by increased production of exoproteins, and decreased capacity to form a biofilm. The greater influence of in RN6390 relative to UAMS-1 was also evident when the transcriptional profile of UAMS-1 was compared with that of its isogenic and mutants. Specifically, the results indicate that, in contrast to NCTC 8325 derivatives, plays a limited role in overall regulation of gene expression in UAMS-1, when compared with . Furthermore, by defining the regulon in a biofilm-positive clinical isolate, and comparing the results with transcriptional profiling experiments defining biofilm-associated gene expression patterns in the same strain, the authors identified a -regulated operon () that is also induced in biofilms, and demonstrated that mutation of results in reduced capacity to form a biofilm.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29033-0
2006-10-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/3075.html?itemId=/content/journal/micro/10.1099/mic.0.29033-0&mimeType=html&fmt=ahah

References

  1. Aires de Sousa, M., Conceicao, T., Simas, C. & de Lencastre, H. ( 2005; ). Comparison of genetic backgrounds of methicillin-resistant and -susceptible Staphylococcus aureus isolates from Portuguese hospitals and the community. J Clin Microbiol 43, 5150–5157.[CrossRef]
    [Google Scholar]
  2. Arvidson, S. & Tegmark, K. ( 2001; ). Regulation of virulence determinants in Staphylococcus aureus. Int J Med Microbiol 291, 159–170.[CrossRef]
    [Google Scholar]
  3. Baba, T., Takeuchi, F., Kuroda, M. & 11 other authors ( 2002; ). Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359, 1819–1827.[CrossRef]
    [Google Scholar]
  4. Bayer, A. S., Ramos, M. D., Menzies, B. E., Yeaman, M. R., Shen, A. J. & Cheung, A. L. ( 1997; ). Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins. Infect Immun 65, 4652–4660.
    [Google Scholar]
  5. Beenken, K. E., Blevins, J. S. & Smeltzer, M. S. ( 2003; ). Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun 71, 4206–4211.[CrossRef]
    [Google Scholar]
  6. Beenken, K. E., Dunman, P. M., McAleese, F., Macapagal, D., Murphy, E., Projan, S. J., Bischoff, M., Entenza, J. M. & Giachino, P. ( 2001; ). Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus. J Bacteriol 183, 5171–5179.[CrossRef]
    [Google Scholar]
  7. Bischoff, M., Dunman, P., Kormanec, J., Macapagal, D., Murphy, E., Mounts, W., Berger-Bachi, B. & Projan, S. ( 2004; ). Microarray-based analysis of the Staphylococcus aureus sigmaB regulon. J Bacteriol 186, 4085–4099.[CrossRef]
    [Google Scholar]
  8. Blevins, J. S. & Smeltzer, M. S. ( 2004; ). Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186, 4665–4684.[CrossRef]
    [Google Scholar]
  9. Blevins, J. S., Beenken, K. E., Elasri, M. O., Hurlburt, B. K. & Smeltzer, M. S. ( 2002; ). Strain-dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus. Infect Immun 70, 470–480.[CrossRef]
    [Google Scholar]
  10. Blevins, J. S., Elasri, M. O., Allmendinger, S. D., Beenken, K. E., Skinner, R. A., Thomas, J. R. & Smeltzer, M. S. ( 2003; ). Role of sarA in the pathogenesis of Staphylococcus aureus musculoskeletal infection. Infect Immun 71, 516–523.[CrossRef]
    [Google Scholar]
  11. Bronner, S., Monteil, H. & Prevost, G. ( 2004; ). Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 28, 183–200.[CrossRef]
    [Google Scholar]
  12. Bruckner, R. ( 1992; ). A series of shuttle vectors for Bacillus subtilis and Escherichia coli. Gene 122, 187–192.[CrossRef]
    [Google Scholar]
  13. Caiazza, N. C. & O'Toole, G. A. ( 2003; ). Alpha-toxin is required for biofilm formation by Staphylococcus aureus. J Bacteriol 185, 3214–3217.[CrossRef]
    [Google Scholar]
  14. Cassat, J. E., Dunman, P. M., McAleese, F., Murphy, E., Projan, S. J. & Smeltzer, M. S. ( 2005; ). Comparative genomics of Staphylococcus aureus musculoskeletal isolates. J Bacteriol 187, 576–592.[CrossRef]
    [Google Scholar]
  15. Chan, P. F. & Foster, S. J. ( 1998; ). Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus. J Bacteriol 180, 6232–6241.
    [Google Scholar]
  16. Cheung, A. L. & Zhang, G. ( 2002; ). Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front Biosci 7, d1825–1842.[CrossRef]
    [Google Scholar]
  17. Cheung, A. L., Bayer, M. G. & Heinrichs, J. H. ( 1997; ). sar genetic determinants necessary for transcription of RNAII and RNAIII in the agr locus of Staphylococcus aureus. J Bacteriol 179, 3963–3971.
    [Google Scholar]
  18. Cheung, A. L., Schmidt, K., Bateman, B. & Manna, A. C. ( 2001; ). SarS, a SarA homolog repressible by agr, is an activator of protein A synthesis in Staphylococcus aureus. Infect Immun 69, 2448–2455.[CrossRef]
    [Google Scholar]
  19. Chien, Y., Manna, A. C., Projan, S. J. & Cheung, A. L. ( 1999; ). SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation. J Biol Chem 274, 37169–37176.[CrossRef]
    [Google Scholar]
  20. Dajcs, J. J., Thibodeaux, B. A., Girgis, D. O. & O'Callaghan, R. J. ( 2002; ). Corneal virulence of Staphylococcus aureus in an experimental model of keratitis. DNA Cell Biol 21, 375–382.[CrossRef]
    [Google Scholar]
  21. Dunman, P. M., Murphy, E., Haney, S. & 7 other authors ( 2001; ). Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183, 7341–7353.[CrossRef]
    [Google Scholar]
  22. Dunman, P. M., Mounts, W., McAleese, F. & 9 other authors ( 2004; ). Uses of Staphylococcus aureus GeneChips in genotyping and genetic composition analysis. J Clin Microbiol 42, 4275–4283.[CrossRef]
    [Google Scholar]
  23. Elasri, M. O., Thomas, J. R., Skinner, R. A., Blevins, J. S., Beenken, K. E., Nelson, C. L. & Smeltzer, M. S. ( 2002; ). Staphylococcus aureus collagen adhesin contributes to the pathogenesis of osteomyelitis. Bone 30, 275–280.[CrossRef]
    [Google Scholar]
  24. Enright, M. C., Day, N. P., Davies, C. P., Peacock, S. J. & Spratt, B. G. ( 2000; ). Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38, 1008–1015.
    [Google Scholar]
  25. Gertz, S., Engelmann, S., Schmid, R., Ohlsen, K., Hacker, J. & Hecker, M. ( 1999; ). Regulation of sigmaB-dependent transcription of sigB and asp23 in two different Staphylococcus aureus strains. Mol Gen Genet 261, 558–566.[CrossRef]
    [Google Scholar]
  26. Gertz, S., Engelmann, S., Schmid, R., Ziebandt, A. K., Tischer, K., Scharf, C., Hacker, J. & Hecker, M. ( 2000; ). Characterization of the sigma(B) regulon in Staphylococcus aureus. J Bacteriol 182, 6983–6991.[CrossRef]
    [Google Scholar]
  27. Giachino, P., Engelmann, S. & Bischoff, M. ( 2001; ). Sigma(B) activity depends on RsbU in Staphylococcus aureus. J Bacteriol 183, 1843–1852.[CrossRef]
    [Google Scholar]
  28. Gillaspy, A. F., Hickmon, S. G., Skinner, R. A., Thomas, J. R., Nelson, C. L. & Smeltzer, M. S. ( 1995; ). Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis. Infect Immun 63, 3373–3380.
    [Google Scholar]
  29. Giraudo, A. T., Raspanti, C. G., Calzolari, A. & Nagel, R. ( 1994; ). Characterization of a Tn551-mutant of Staphylococcus aureus defective in the production of several exoproteins. Can J Microbiol 40, 677–681.[CrossRef]
    [Google Scholar]
  30. Giraudo, A. T., Mansilla, C., Chan, A., Raspanti, C. & Nagel, R. ( 2003; ). Studies on the expression of regulatory locus sae in Staphylococcus aureus. Curr Microbiol 46, 246–250.[CrossRef]
    [Google Scholar]
  31. Goerke, C., Fluckiger, U., Steinhuber, A., Bisanzio, V., Ulrich, M., Bischoff, M., Patti, J. M. & Wolz, C. ( 2005; ). Role of Staphylococcus aureus global regulators sae and sigmaB in virulence gene expression during device-related infection. Infect Immun 73, 3415–3421.[CrossRef]
    [Google Scholar]
  32. Gomez, M. I., Lee, A., Reddy, B., Muir, A., Soong, G., Pitt, A., Cheung, A. & Prince, A. ( 2004; ). Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat Med 10, 842–848.[CrossRef]
    [Google Scholar]
  33. Goodyear, C. S. & Silverman, J. G. ( 2004; ). Staphylococcal toxin induced preferential and prolonged in vivo deletion of innate-like B lymphocytes. Proc Natl Acad Sci U S A 101, 11392–11397.[CrossRef]
    [Google Scholar]
  34. Holden, M. T., Feil, E. J., Lindsay, J. A. & 42 other authors ( 2004; ). Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 101, 9786–9791.[CrossRef]
    [Google Scholar]
  35. Horsburgh, M. J., Aish, J. L., White, I. J., Shaw, L., Lithgow, J. K. & Foster, S. J. ( 2002; ). SigmaB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 184, 5457–5467.[CrossRef]
    [Google Scholar]
  36. Janzon, L., Lofdahl, S. & Arvidson, S. ( 1989; ). Identification and nucleotide sequence of the delta-lysin gene, hld, adjacent to the accessory gene regulator (agr) of Staphylococcus aureus. Mol Gen Genet 219, 480–485.[CrossRef]
    [Google Scholar]
  37. Jefferson, K. K., Pier, D. B., Goldmann, D. A. & Pier, G. B. ( 2004; ). The teicoplanin-associated locus regulator (TcaR) and the intercellular adhesin locus regulator (IcaR) are transcriptional inhibitors of the ica locus in Staphylococcus aureus. J Bacteriol 186, 2449–2456.[CrossRef]
    [Google Scholar]
  38. Johnson, A. P., Pearson, A. & Duckworth, G. ( 2005; ). Surveillance and epidemiology of MRSA bacteraemia in the UK. J Antimicrob Chemother 56, 455–462.[CrossRef]
    [Google Scholar]
  39. Jonsson, P., Lindberg, M., Haraldsson, I. & Wadstrom, T. ( 1985; ). Virulence of Staphylococcus aureus in a mouse mastitis model: studies of alpha hemolysin, coagulase, and protein A as possible virulence determinants with protoplast fusion and gene cloning. Infect Immun 49, 765–769.
    [Google Scholar]
  40. Karlsson, A. & Arvidson, S. ( 2002; ). Variation in extracellular protease production among clinical isolates of Staphylococcus aureus due to different levels of expression of the protease repressor sarA. Infect Immun 70, 4239–4246.[CrossRef]
    [Google Scholar]
  41. Karlsson, A., Saravia-Otten, P., Tegmark, K., Morfeldt, E. & Arvidson, S. ( 2001; ). Decreased amounts of cell wall-associated protein A and fibronectin-binding proteins in Staphylococcus aureus sarA mutants due to up-regulation of extracellular proteases. Infect Immun 69, 4742–4748.[CrossRef]
    [Google Scholar]
  42. Koenig, R. L., Ray, J. L., Maleki, S. J., Smeltzer, M. S. & Hurlburt, B. K. ( 2004; ). Staphylococcus aureus AgrA binding to the RNAIII-agr regulatory region. J Bacteriol 186, 7549–7555.[CrossRef]
    [Google Scholar]
  43. Kovacikova, G., Lin, W. & Skorupski, K. ( 2005; ). Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol Microbiol 57, 420–433.[CrossRef]
    [Google Scholar]
  44. Kullik, I., Giachino, P. & Fuchs, T. ( 1998; ). Deletion of the alternative sigma factor σ B in Staphylococcus aureus reveals its function as a global regulator of virulence genes. J Bacteriol 180, 4814–4820.
    [Google Scholar]
  45. Luong, T. T., Dunman, P. M., Murphy, E., Projan, S. J. & Lee, C. Y. ( 2006; ). Transcription profiling of the mgrA regulon in Staphylococcus aureus. J Bacteriol 188, 1899–1910.[CrossRef]
    [Google Scholar]
  46. Manna, A. C., Bayer, M. G. & Cheung, A. L. ( 1998; ). Transcriptional analysis of different promoters in the sar locus in Staphylococcus aureus. J Bacteriol 180, 3828–3836.
    [Google Scholar]
  47. McCallum, N., Bischoff, M., Maki, H., Wada, A. & Berger-Bachi, B. ( 2004; ). TcaR, a putative MarR-like regulator of sarS expression. J Bacteriol 186, 2966–2972.[CrossRef]
    [Google Scholar]
  48. Mehlin, C., Headly, C. M. & Klebanoff, S. J. ( 1999; ). An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J Exp Med 189, 907–918.[CrossRef]
    [Google Scholar]
  49. Moore, P. C. & Lindsay, J. A. ( 2002; ). Molecular characterization of the dominant UK methicillin-resistant Staphylococcus aureus strains, EMRSA-15 and EMRSA-16. J Med Microbiol 51, 516–521.
    [Google Scholar]
  50. Nilsson, I. M., Hartford, O., Foster, T. & Tarkowski, A. ( 1999; ). Alpha-toxin and gamma-toxin jointly promote Staphylococcus aureus virulence in murine septic arthritis. Infect Immun 67, 1045–1049.
    [Google Scholar]
  51. Nimmo, G. R., Coombs, G. W., Pearson, J. C., O'Brien, F. G., Christiansen, K. J., Turnidge, J. D., Gosbell, I. B., Collignon, P. & McLaws, M. L. ( 2006; ). Methicillin-resistant Staphylococcus aureus in the Australian community: an evolving epidemic. Med J Aust 184, 384–388.
    [Google Scholar]
  52. Novick, R. ( 1967; ). Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology 33, 155–166.[CrossRef]
    [Google Scholar]
  53. Novick, R. P. ( 2003; ). Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48, 1429–1449.[CrossRef]
    [Google Scholar]
  54. Novick, R. P., Ross, H. F., Projan, S. J., Kornblum, J., Kreiswirth, B. & Moghazeh, S. ( 1993; ). Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12, 3967–3975.
    [Google Scholar]
  55. Novick, R. P. & Jiang, D. ( 2003; ). The staphylococcal saeRS system coordinates environmental signals with agr quorum sensing. Microbiology 149, 2709–2717.[CrossRef]
    [Google Scholar]
  56. Otto, M., O'Mahoney, D. S., Guina, T. & Klebanoff, S. J. ( 2004; ). Activity of Staphylococcus epidermidis phenol-soluble modulin peptides expressed in Staphylococcus carnosus. J Infect Dis 190, 748–755.[CrossRef]
    [Google Scholar]
  57. Palmqvist, N., Foster, T., Tarkowski, A. & Josefsson, E. ( 2002; ). Protein A is a virulence factor in Staphylococcus aureus arthritis and septic death. Microb Pathog 33, 239–249.[CrossRef]
    [Google Scholar]
  58. Palmqvist, N., Silverman, J. G., Josefsson, E. & Tarkowski, A. ( 2005; ). Bacterial cell wall-expressed protein A triggers supraclonal B-cell responses upon in vivo infection with Staphylococcus aureus. Microbes Infect 7, 1501–1511.[CrossRef]
    [Google Scholar]
  59. Papakyriacou, H., Vaz, D., Simor, A., Louie, M. & McGavin, M. J. ( 2000; ). Molecular analysis of the accessory gene regulator (agr) locus and balance of virulence factor expression in epidemic methicillin-resistant Staphylococcus aureus. J Infect Dis 181, 990–1000.[CrossRef]
    [Google Scholar]
  60. Pragmann, A. A., Yarwood, J. M., Tripp, T. J. & Schlievert, P. M. ( 2004; ). Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus. J Bacteriol 186, 2430–2438.[CrossRef]
    [Google Scholar]
  61. Ranelli, D. M., Jones, C. L., Johns, M. B., Mussey, G. J. & Khan, S. A. ( 1985; ). Molecular cloning of staphylococcal enterotoxin B gene in Escherichia coli and Staphylococcus aureus. PNAS 82, 5850–5854.[CrossRef]
    [Google Scholar]
  62. Rechtin, T. M., Gillaspy, A. F., Schumacher, M. A., Brennan, R. G., Smeltzer, M. S. & Hurlburt, B. K. ( 1999; ). Characterization of the SarA virulence gene regulator of Staphylococcus aureus. Mol Microbiol 33, 307–316.[CrossRef]
    [Google Scholar]
  63. Roberts, C., Anderson, K. L., Murphy, E. & 7 other authors ( 2006; ). Characterizing the effect of the Staphylococcus aureus virulence factor regulator, SarA, on log-phase mRNA half-lives. J Bacteriol 188, 2593–2603.[CrossRef]
    [Google Scholar]
  64. Schmidt, K. A., Manna, A. C. & Cheung, A. L. ( 2003; ). SarT influences sarS expression in Staphylococcus aureus. Infect Immun 71, 5139–5148.[CrossRef]
    [Google Scholar]
  65. Schwan, W. R., Langhorne, M. H., Ritchie, H. D. & Stover, C. K. ( 2003; ). Loss of hemolysin expression in Staphylococcus aureus agr mutants correlates with selective survival during mixed infections in murine abscesses and wounds. FEMS Immunol Med Microbiol 38, 23–28.[CrossRef]
    [Google Scholar]
  66. Smeltzer, M. S., Pratt, F. L., Gillaspy, A. F. & Young, L. A. ( 1996; ). Genomic fingerprinting for epidemiological differentiation of Staphylococcus aureus clinical isolates. J Clin Microbiol 34, 1364–1372.
    [Google Scholar]
  67. Smeltzer, M. S., Thomas, J. R., Skinner, R. A., Nelson, C. L., Griffith, D., Parr, T. R., Jr & Evans, R. P. ( 1997; ). Characterization of a rabbit model of staphylococcal osteomyelitis. J Orthop Res 15, 414–421.[CrossRef]
    [Google Scholar]
  68. Steinhuber, A., Goerke, C., Bayer, M. G., Doring, G. & Wolz, C. ( 2003; ). Molecular architecture of the regulatory Locus sae of Staphylococcus aureus and its impact on expression of virulence factors. J Bacteriol 185, 6278–6286.[CrossRef]
    [Google Scholar]
  69. Sterba, K. M., Mackintosh, S. G., Blevins, J. S., Hurlburt, B. K. & Smeltzer, M. S. ( 2003; ). Characterization of Staphylococcus aureus SarA binding sites. J Bacteriol 185, 4410–4417.[CrossRef]
    [Google Scholar]
  70. Tegmark, K., Karlsson, A. & Arvidson, S. ( 2000; ). Identification and characterization of SarH1, a new global regulator of virulence gene expression in Staphylococcus aureus. Mol Microbiol 37, 398–409.[CrossRef]
    [Google Scholar]
  71. Udo, E. E., Al-Sweih, N. & Noronha, B. ( 2006; ). Characterisation of non-multiresistant methicillin-resistant Staphylococcus aureus (including EMRSA-15) in Kuwait Hospitals. Clin Microbiol Infect 12, 262–269.[CrossRef]
    [Google Scholar]
  72. Valle, J., Toledo-Arana, A., Berasain, C., Ghigo, J. M., Amorena, B., Penades, J. R. & Lasa, I. ( 2003; ). SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 48, 1075–1087.[CrossRef]
    [Google Scholar]
  73. Vuong, C., Saenz, H. L., Gotz, F. & Otto, M. ( 2000; ). Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J Infect Dis 182, 1688–1693.[CrossRef]
    [Google Scholar]
  74. Vuong, C., Durr, M., Carmody, A. B., Peschel, A., Klebanoff, S. J. & Otto, M. ( 2004; ). Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell Microbiol 6, 753–759.[CrossRef]
    [Google Scholar]
  75. Weinrick, B., Dunman, P., McAleese, F., Murphy, E., Projan, S. J., Fang, Y. & Novick, R. P. ( 2004; ). Effect of mild acid on gene expression in Staphylococcus aureus. J Bacteriol 186, 8407–8423.[CrossRef]
    [Google Scholar]
  76. Yang, S. J., Dunman, P. M., Projan, S. J. & Bayles, K. W. ( 2006; ). Characterization of the Staphylococcus aureus CidR regulon: elucidation of a novel role for acetoin metabolism in cell death and lysis. Mol Microbiol 60, 458–468.[CrossRef]
    [Google Scholar]
  77. Yao, Y., Sturdevandt, D. E. & Otto, M. ( 2005; ). Genomewide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into the pathophysiology of S. epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms. J Infect Dis 191, 289–298.[CrossRef]
    [Google Scholar]
  78. Yarwood, J. M., McCormick, J. K. & Schlievert, P. M. ( 2001; ). Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus. J Bacteriol 183, 1113–1123.[CrossRef]
    [Google Scholar]
  79. Ziebandt, A. K., Becher, D., Ohlsen, K., Hacker, J., Hecker, M. & Engelmann, S. ( 2004; ). The influence of agr and sigmaB in growth phase dependent regulation of virulence factors in Staphylococcus aureus. Proteomics 4, 3034–3037.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29033-0
Loading
/content/journal/micro/10.1099/mic.0.29033-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error