1887

Abstract

L2 was used to infect BGMK cells at an m.o.i. of 1.0, and the developmental cycle was followed by transmission electron microscopy and quantitative PCR (QPCR) for both chromosomal and plasmid DNA. Samples were taken at sequential 6 h time points. Subsequent analysis by QPCR showed that there was an initial slow replication period (0–18 h), followed by a rapid phase (18–36 h) coinciding with exponential division when the DNA doubling time was 4.6 h. Chromosomal DNA was amplified 100–200-fold corresponding to 7–8 generations for the complete developmental cycle. Penicillin (10 and 100 units ml) was added to cultures at 20 h post-infection (p.i.). This blocked binary fission and also prevented reticulate body (RB) to elementary body transition. However, exposure to penicillin did not prevent chromosomal or plasmid DNA replication. After a short lag period, following the addition of penicillin, chlamydial chromosomal DNA replication resumed at the same rate as in control -infected cells. -infected host cells exposed to penicillin did not lyse, but instead harboured large, aberrant RBs in massive inclusions that completely filled the cell cytoplasm. In these RBs, the DNA continued to replicate well beyond the end of the normal developmental cycle. At 60 h p.i. each aberrant RB contained a minimum of 16 chromosomal copies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29032-0
2006-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2573.html?itemId=/content/journal/micro/10.1099/mic.0.29032-0&mimeType=html&fmt=ahah

References

  1. Armstrong, J. A. ( 1967; ). Fine structure of lymphogranuloma venereum agent and the effects of penicillin and 5′ fluorouracil. J Gen Microbiol 129, 2001–2007.
    [Google Scholar]
  2. Barbour, A. G., Amano, K.-I., Hackstadt, T., Perry, L. & Caldwell, H. D. ( 1982; ). Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J Bacteriol 151, 420–428.
    [Google Scholar]
  3. Beatty, W. L., Morrison, R. P. & Byrne, G. I. ( 1994; ). Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol Rev 58, 686–699.
    [Google Scholar]
  4. Brown, W. J. & Rockey, D. D. ( 2000; ). Identification of an antigen localized to an apparent septum within dividing chlamydiae. Infect Immun 68, 708–715.[CrossRef]
    [Google Scholar]
  5. Cevenini, R., Donati, M. & La Placa, M. ( 1988; ). Effects of penicillin on the synthesis of membrane proteins of the Chlamydia trachomatis LGV2 serotype. FEMS Microbiol Lett 56, 41–46.[CrossRef]
    [Google Scholar]
  6. Chopra, I., Storey, C., Falla, T. J. & Pearce, J. H. ( 1998; ). Antibiotics, peptidoglycan synthesis and genomics: the chlamydial anomaly revisited. Microbiology 144, 2673–2678.[CrossRef]
    [Google Scholar]
  7. Clark, R. B., Schatzki, P. F. & Dalton, H. P. ( 1982; ). Ultrastructural effect of penicillin and cycloheximide on Chlamydia trachomatis strain HAR-13. Med Microbiol Immunol 171, 151–159.[CrossRef]
    [Google Scholar]
  8. Clarke, I. N. & Lambden, P. R. ( 1988; ). Stable cloning of the amino terminus of the 60 kDa outer membrane protein of Chlamydia trachomatis serovar L1. FEMS Microbiol Lett 51, 81–86.[CrossRef]
    [Google Scholar]
  9. Errington, J., Daniel, R. A. & Scheffers, D. J. ( 2003; ). Cytokinesis in bacteria. Microbiol Mol Biol Rev 67, 52–65.[CrossRef]
    [Google Scholar]
  10. Ghuysen, J. M. & Goffin, C. ( 1999; ). Lack of cell wall peptidoglycan versus penicillin sensitivity: new insights into the chlamydial anomaly. Antimicrob Agents Chemother 43, 2339–2344.
    [Google Scholar]
  11. Hatt, C., Ward, M. E. & Clarke, I. N. ( 1988; ). Analysis of the entire nucleotide sequence of the cryptic plasmid of Chlamydia trachomatis serovar L1. Evidence for involvement in DNA replication. Nucleic Acids Res 16, 4053–4067.[CrossRef]
    [Google Scholar]
  12. Hogan, R. J., Mathews, S. A., Mukhopadhyay, S., Summersgill, J. T. & Timms, P. ( 2004; ). Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 72, 1843–1855.[CrossRef]
    [Google Scholar]
  13. Johnson, F. W. A. & Hobson, D. ( 1977; ). The effect of penicillin on genital strains of Chlamydia trachomatis in tissue culture. J Antimicrob Chemother 3, 49–56.[CrossRef]
    [Google Scholar]
  14. Kramer, M. J. & Gordon, F. B. ( 1971; ). Ultra structural analysis of the effects of penicillin and chlortetracycline on the development of genital tract Chlamydia. Infect Immun 3, 333–341.
    [Google Scholar]
  15. Liu, B. L., Everson, J. S., Fane, B., Giannikopoulou, P., Vretou, E., Lambden, P. R. & Clarke, I. N. ( 2000; ). Molecular characterization of a bacteriophage (Chp2) from Chlamydia psittaci. J Virol 74, 3464–3469.[CrossRef]
    [Google Scholar]
  16. Mathews, S. A., Volp, K. M. & Timms, P. ( 1999; ). Development of a quantitative gene expression assay for Chlamydia trachomatis identified temporal expression of σ factors. FEBS Lett 458, 354–358.[CrossRef]
    [Google Scholar]
  17. Matsumoto, A. & Manire, G. P. ( 1970; ). Electron microscopic observations on the effects of penicillin on the morphology of Chlamydia psittaci. J Bacteriol 101, 278–285.
    [Google Scholar]
  18. McCoy, A. J. & Maurelli, A. T. ( 2006; ). Building the invisible wall: updating the chlamydial peptidoglycan anomaly. Trends Microbiol 14, 70–77.[CrossRef]
    [Google Scholar]
  19. Moulder, J. W. ( 1993; ). Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan? Infect Agents Dis 2, 87–99.
    [Google Scholar]
  20. Phillips, D. M., Swenson, C. E. & Schachter, J. ( 1984; ). Ultrastructure of Chlamydia trachomatis infection of the mouse oviduct. J Ultrastruct Res 88, 244–256.[CrossRef]
    [Google Scholar]
  21. Pickett, M. A., Everson, J. S., Pead, P. J. & Clarke, I. N. ( 2005; ). The plasmids of Chlamydia trachomatis and Chlamydophila pneumoniae (N16): accurate determination of copy number and the paradoxical effect of plasmid-curing agents. Microbiology 151, 893–903.[CrossRef]
    [Google Scholar]
  22. Rockey, D. D. & Matsumoto, A. ( 2000; ). The chlamydial developmental cycle. In Prokaryotic Development, pp. 403–425. Edited by Y. V. Brun & L. J. Shimkets. Washington, DC: American Society for Microbiology.
  23. Sardinia, L. M., Segal, E. & Ganem, D. ( 1988; ). Developmental regulation of the cysteine-rich outer-membrane proteins of murine Chlamydia trachomatis. J Gen Microbiol 134, 997–1004.
    [Google Scholar]
  24. Scheffers, D. J. & Pinho, M. G. ( 2005; ). Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 69, 585–607.[CrossRef]
    [Google Scholar]
  25. Shaw, E. I., Dooley, C. A., Fischer, E. R., Scidmore, M. A., Fields, K. A. & Hackstadt, T. ( 2000; ). Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol Microbiol 37, 913–925.[CrossRef]
    [Google Scholar]
  26. Shemer, Y. & Sarov, I. ( 1985; ). Inhibition of growth of Chlamydia trachomatis by human gamma interferon. Infect Immun 48, 592–596.
    [Google Scholar]
  27. Skipp, P., Robinson, J., O'Connor, C. D. & Clarke, I. N. ( 2005; ). Shotgun proteomic analysis of Chlamydia trachomatis. Proteomics 5, 1558–1573.[CrossRef]
    [Google Scholar]
  28. Stephens, R. S., Kalman, S., Lammel, C. & 9 other authors ( 1998; ). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759.[CrossRef]
    [Google Scholar]
  29. Storey, C. & Chopra, I. ( 2001; ). Affinities of β-lactams for penicillin binding proteins of Chlamydia trachomatis and their antichlamydial activities. Antimicrob Agents Chemother 45, 303–305.[CrossRef]
    [Google Scholar]
  30. Ward, M. E. ( 1983; ). Chlamydial classification, development and structure. Br Med Bull 39, 109–115.
    [Google Scholar]
  31. Watson, M. W., Lambden, P. R., Everson, J. S. & Clarke, I. N. ( 1994; ). Immunoreactivity of the 60 kDa cysteine-rich proteins of Chlamydia trachomatis, Chlamydia psittaci and Chlamydia pneumoniae expressed in Escherichia coli. Microbiology 140, 2003–2011.[CrossRef]
    [Google Scholar]
  32. Wilson, D. P., Mathews, S., Wan, C., Pettitt, A. N. & McElwain, D. L. S. ( 2004; ). Use of a quantitative gene expression assay based on micro-array techniques and a mathematical model for the investigation of chlamydial generation time. Bull Math Biol 66, 523–537.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29032-0
Loading
/content/journal/micro/10.1099/mic.0.29032-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error