1887

Abstract

, an environmental bacterium that may also be responsible for human infections, produces two unrelated, inducible and chromosomally encoded oxacillinases, OXA-22 and OXA-60. In order to study the molecular basis of the induction process of these oxacillinase genes, the induction kinetics, the promoter/operator regions necessary for expression and induction, and the role of several ORFs located upstream and downstream of the genes were investigated. The -lactamase production reached a maximal level after 1 h induction, returned to its basal level within the following 3 h and was then again inducible. Using 5′RACE experiments, the promoter sequences of both oxacillinases were determined. These sequences showed weak promoter activities, which could, however, be increased approximately 200-fold by mutating the −35 promoter sequence. Deletion of the sequences located upstream of the promoter regions did not modify the basal -lactamase expression in , but resulted in the lack of induction. A minimum of 240 and 270 bp upstream of the transcription initiation sites was required for inducible expression of the and genes, respectively. Analysis of the genetic environment of both genes revealed several ORFs that were inactivated by homologous recombination. Disruption of ORF-RP3, located 190 bp upstream of and divergently transcribed, abolished induction of both -lactamases. ORF-RP3, which encoded a polypeptide of 532 aa with an estimated molecular mass of 58.7 kDa, displayed no obvious sequence homology with known regulatory proteins. -complementation of ORF-RP3 restored the basal and inducible expression of both oxacillinase genes, indicating that the induction of both enzymes was related to the presence of ORF-RP3. In addition to the loss of induction, inactivation of the ORF-RP3 in resulted in a complex pleiotropic phenotype, with increased lag phase and reduced survival after heat exposure, suggesting that ORF-RP3 might be a global regulator involved in unrelated regulatory pathways.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29027-0
2006-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2661.html?itemId=/content/journal/micro/10.1099/mic.0.29027-0&mimeType=html&fmt=ahah

References

  1. Alksne L. E, Rasmussen B. A. 1997; Expression of the AsbA1, OXA-12, and AsbM1 β -lactamases in Aeromonas jandei AER14 is coordinated by a two-component regulon. J Bacteriol 179:2006–2013
    [Google Scholar]
  2. Ambler R. P, Coulson A. F, Frere J.-M, Ghuysen J. M, Joris B, Forsman M, Levesque R. C, Tiraby G, Waley S. G. 1991; A standard numbering scheme for the class A beta-lactamases. Biochem J 276:269–270
    [Google Scholar]
  3. Aubert D, Naas T, Nordmann P. 2003; IS 1999 increases expression of the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa . J Bacteriol 185:5314–5319 [CrossRef]
    [Google Scholar]
  4. Avison M. B, Horton R. E, Walsh T. R, Bennett P. M. 2001; Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media. J Biol Chem 276:26955–26961 [CrossRef]
    [Google Scholar]
  5. Avison M. B, Niumsup P, Nurmahomed K, Walsh T. R, Bennett P. M. 2004; Role of the ‘cre/blr-tag’ DNA sequence in regulation of gene expression by the Aeromonas hydrophila beta-lactamase regulator, BlrA. J Antimicrob Chemother 53:197–202 [CrossRef]
    [Google Scholar]
  6. Bartowsky E, Normark S. 1991; Purification and mutant analysis of Citrobacter freundii AmpR, the regulator for chromosomal AmpC beta-lactamase. Mol Microbiol 5:1715–1725 [CrossRef]
    [Google Scholar]
  7. Bartowsky E, Normark S. 1993; Interactions of wild-type and mutant AmpR of Citrobacter freundii with target DNA. Mol Microbiol 10:555–565 [CrossRef]
    [Google Scholar]
  8. Bennett P. M, Chopra I. 1993; Molecular basis of beta-lactamase induction in bacteria. Antimicrob Agents Chemother 37:153–158 [CrossRef]
    [Google Scholar]
  9. Brazilian National Genome Project Consortium 2003; The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci U S A 100:11660–11665 [CrossRef]
    [Google Scholar]
  10. Bush K, Jacoby G. A, Medeiros A. A. 1995; A functional classification scheme for β -lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233 [CrossRef]
    [Google Scholar]
  11. Chen H. Y, Yuan M, Livermore D. M. 1995; Mechanisms of resistance to β -lactam antibiotics amongst Pseudomonas aeruginosa isolates collected in the UK in 1994. J Med Microbiol 43:300–309 [CrossRef]
    [Google Scholar]
  12. Chetoui H, Melin P, Struelens M. J, Delhalle E, Mutro Nigo M, De Ryck R, De Mol P. 1997; Comparison of biotyping, ribotyping and pulse-field gel electrophoresis for investigation of a common-source outbreak of Burkholderia pickettii bacteremia. J Clin Microbiol 35:1398–1403
    [Google Scholar]
  13. Core L, Perego M. 2003; TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis . Mol Microbiol 49:1509–1522 [CrossRef]
    [Google Scholar]
  14. Dimech W. J, Hellyar A. G, Kotin M, Marcon D, Ellis S, Carson M. 1993; Typing of strain from a single-source outbreak of Pseudomonas pickettii . J Clin Microbiol 31:3001–3006
    [Google Scholar]
  15. Filee P, Benlafya K, Delmarcelle M, Moutzourelis G, Brans A, Joris B, Frère J. M. 2002; The fate of the BlaI repressor during the induction of the Bacillus licheniformis BlaP beta-lactamase. Mol Microbiol 44:685–694 [CrossRef]
    [Google Scholar]
  16. Giligan G. H. 1995; Pseudomonas and Burkholderia. In Manual of Clinical Microbiology pp  509–519 Edited by Murray R. P., Baron E. J., Pfaller M. A., Tenover F. C., Yolken R. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Girlich D, Naas T, Bellais S, Poirel L, Karim A, Nordmann P. 2000; Biochemical-genetic characterization and regulation of expression of an ACC-1-like chromosome-borne cephalosporinase from Hafnia alvei . Antimicrob Agents Chemother 44:1470–1478 [CrossRef]
    [Google Scholar]
  18. Girlich D, Naas T, Nordmann P. 2004a; Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa . Antimicrob Agents Chemother 48:2043–2048 [CrossRef]
    [Google Scholar]
  19. Girlich D, Naas T, Nordmann P. 2004b; OXA-60, a chromosomal, inducible, and imipenem-hydrolyzing class D beta-lactamase from Ralstonia pickettii . Antimicrob Agents Chemother 48:4217–4225 [CrossRef]
    [Google Scholar]
  20. Héritier C, Poirel L, Nordmann P. 2004; Genetic and biochemical characterization of a chromosome-encoded carbapenem-hydrolyzing ambler class D beta-lactamase from Shewanella algae . Antimicrob Agents Chemother 48:1670–1675 [CrossRef]
    [Google Scholar]
  21. Héritier C, Poirel L, Fournier P. E, Claverie J. M, Raoult D, Nordmann P. 2005; Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii . Antimicrob Agents Chemother 49:4174–4179 [CrossRef]
    [Google Scholar]
  22. Ho Y. S, Burden L. M, Hurley J. H. 2000; Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J 19:5288–5299 [CrossRef]
    [Google Scholar]
  23. Iaconis J. P, Sanders C. C. 1990; Purification and characterization of inducible beta-lactamases in Aeromonas spp. Antimicrob Agents Chemother 34:44–51 [CrossRef]
    [Google Scholar]
  24. Joris B, Hardt K, Ghuysen J. M. 1994 In Bacterial Cell Wall vol. 27 pp  505–515 Edited by Ghuysen J. M., Hakenbeck R. Amsterdam: Elsevier;
    [Google Scholar]
  25. Kahan A, Philippon A, Paul G, Weber S, Richard C, Hazebroucq G, Degeorges M. 1983; Nosocomial infection by chlorhexidine solution contaminated with Pseudomonas pickettii (Biovar VA-I). J Infect 7:256–263 [CrossRef]
    [Google Scholar]
  26. Kobayashi T, Zhu Y. F, Nicholls N. J, Lampen J. O. 1987; A second regulatory gene, blaR1 , encoding a potential penicillin-binding protein required for induction of beta-lactamase in Bacillus licheniformis . J Bacteriol 169:3873–3878
    [Google Scholar]
  27. Lindberg F, Normark S. 1987; Common mechanism of ampC beta-lactamase induction in enterobacteria: regulation of the cloned Enterobacter cloacae P99 beta-lactamase gene. J Bacteriol 169:758–763
    [Google Scholar]
  28. Lindberg F, Westma L, Normark S. 1985; Regulatory components in Citrobacter freundii ampC beta-lactamase induction. Proc Natl Acad Sci U S A 82:4620–4624 [CrossRef]
    [Google Scholar]
  29. Lindquist S, Galleni M, Lindberg F, Normark S. 1989; Signalling proteins in enterobacterial AmpC beta-lactamase regulation. Mol Microbiol 3:1091–1102 [CrossRef]
    [Google Scholar]
  30. Lisser S, Margalit H. 1993; Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res 21:1507–1516 [CrossRef]
    [Google Scholar]
  31. Lodge J. M, Minchin S. D, Piddock L. J, Busby J. W. 1990; Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. Biochem J 272:627–631
    [Google Scholar]
  32. Naas T, Nordmann P. 1994; Analysis of a carbapenem-hydrolyzing class A beta-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proc Natl Acad Sci U S A 91:7693–7697 [CrossRef]
    [Google Scholar]
  33. Naas T, Nordmann P. 1999; OXA-type β -lactamases. Curr Pharm Des 5:865–879
    [Google Scholar]
  34. Naas T, Livermore D. M, Nordmann P. 1995; Characterization of an LysR family protein, SmeR from Serratia marcescens S6, its effect on expression of the carbapenem-hydrolyzing beta-lactamase Sme-1, and comparison of this regulator with other beta-lactamase regulators. Antimicrob Agents Chemother 39:629–637 [CrossRef]
    [Google Scholar]
  35. Nishino K, Inazumi Y, Yamaguchi A. 2003; Global analysis of genes regulated by EvgA of the two-component regulatory system in Escherichia coli . J Bacteriol 185:2667–2672 [CrossRef]
    [Google Scholar]
  36. Niumsup P, Simm A. M, Nurmahomed K, Walsh T. R, Bennett P. M, Avison M. B. 2003; Genetic linkage of the penicillinase gene, amp , and blrAB , encoding the regulator of beta-lactamase expression in Aeromonas spp. J Antimicrob Chemother 51:1351–1358 [CrossRef]
    [Google Scholar]
  37. Nordmann P, Poirel L, Kubina M, Casetta A, Naas T. 2000; Biochemical-genetic characterization and distribution of OXA-22, a chromosomal and inducible class D β -lactamase from Ralstonia (Pseudomonas) pickettii . Antimicrob Agents Chemother 44:2201–2204 [CrossRef]
    [Google Scholar]
  38. Philippon L. N, Naas T, Bouthors A. T, Barakett V, Nordmann P. 1997; OXA-18, a class D clavulanic-acid inhibited extended-spectrum β -lactamase from Pseudomonas aeruginosa . Antimicrob Agents Chemother 41:2188–2195
    [Google Scholar]
  39. Philippon A, Dusart J, Joris B, Frère J. M. 1998; The diversity, structure and regulation of beta-lactamases. Cell Mol Life Sci 54:341–346 [CrossRef]
    [Google Scholar]
  40. Phillips R. W, Wiegel J, Berry C. J, Fliermans C, Peacock A. D, White D. C, Shimkets L. J. 2002; Kineococcus radiotolerans sp. nov., a radiation-resistant, Gram-positive bacterium. Int J Syst Evol Microbiol 52:933–938 [CrossRef]
    [Google Scholar]
  41. Poirel L, Guibert M, Girlich D, Naas T, Nordmann P. 1999; Cloning, sequence analyses, expression and distribution of ampC-ampR from Morganella morganii clinical isolates. Antimicrob Agents Chemother 43:769–776
    [Google Scholar]
  42. Poirel L, Nordmann P, Héritier C. 2004; Chromosome-encoded ambler class D beta-lactamase of Shewanella oneidensis as a progenitor of carbapenem-hydrolyzing oxacillinase. Antimicrob Agents Chemother 48:348–351 [CrossRef]
    [Google Scholar]
  43. Prod'hom G, Lagier B, Pelicic V, Hance A. J, Gicquel B, Guilhot C. 1998; A reliable amplification technique for the characterization of genomic DNA sequences flanking insertion sequences. FEMS Microbiol Lett 158:75–81 [CrossRef]
    [Google Scholar]
  44. Ramos-Aires J, Plesiat P, Kocjancic-Curty L, Kohler T. 2004; Selection of an antibiotic-hypersusceptible mutant of Pseudomonas aeruginosa : identification of the GlmR transcriptional regulator. Antimicrob Agents Chemother 48:843–851 [CrossRef]
    [Google Scholar]
  45. Rasmussen B. A, Keeney D, Yang Y, Bush K. 1994; Cloning and expression of a cloxacillin-hydrolyzing enzyme and a cephalosporinase from Aeromonas sobria AER 14M in Escherichia coli : requirement for an E. coli chromosomal mutation for efficient expression of the class D enzyme. Antimicrob Agents Chemother 38:2078–2085 [CrossRef]
    [Google Scholar]
  46. Raveh D, Simhon A, Gimmon Z, Sacks T, Shapiro M. 1993; Infections caused by Pseudomonas pickettii in association with permanent indwelling intravenous devices: four cases and review. Clin Infect Dis 17:877–880 [CrossRef]
    [Google Scholar]
  47. Redenbach M, Kieser H. M, Denapaite D, Eichner A, Cullum J, Kinashi H, Hoopwood D. A. 1996; A set of ordered cosmids and detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3 (2) chromosome. Mol Microbiol 21:77–96 [CrossRef]
    [Google Scholar]
  48. Salanoubat M, Artiguenave F, Génin S. 25 other authors 2002; Genome sequence of the plant pathogen Ralstonia solanacearum . Nature 415:497–502 [CrossRef]
    [Google Scholar]
  49. Sambrook J, Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  50. Seoane A, Francia M. V, Garcia Lobo J. M. 1992; Nucleotide sequence of the ampC-ampR region from the chromosome of Yersinia enterocolitica . Antimicrob Agents Chemother 36:1049–1052 [CrossRef]
    [Google Scholar]
  51. Staskawicz B, Dahlbeck D, Keen N, Napoli C. 1987; Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea . J Bacteriol 169:5789–5794
    [Google Scholar]
  52. Suh S. J, Silo-Suh L, Woods D. E, Hassett D. J, West S. E, Ohman D. E. 1999; Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa . J Bacteriol 181:3890–3897
    [Google Scholar]
  53. Urabe H, Ogawara H. 1992; Nucleotide sequence and transcriptional analysis of activator-regulator proteins for beta-lactamase in Streptomyces cacaoi . J Bacteriol 174:2834–2842
    [Google Scholar]
  54. Vershraegen G, Claeys G, Meeus G, Delanche M. 1985; Pseudomonas pickettii as a cause of pseudobacteremia. J Clin Microbiol 21:278–279
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29027-0
Loading
/content/journal/micro/10.1099/mic.0.29027-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error