1887

Abstract

Peptidyl-tRNA hydrolase (Pth) releases tRNA from peptidyl-tRNA by cleaving the ester bond between the peptide and the tRNA. Genetic analyses using harbouring temperature-sensitive Pth have identified a number of translation factors involved in peptidyl-tRNA release. Accumulation of peptidyl-tRNA in the cells leads to depletion of aminoacyl-tRNA pools and halts protein biosynthesis. Thus, it is vital for cells to maintain Pth activity to deal with the pollution of peptidyl-tRNAs generated during the initiation, elongation and termination steps of protein biosynthesis. Interestingly, while eubacteria possess a single class of peptidyl-tRNA hydrolase, eukaryotes possess several such activities, making Pth a potential drug target to control eubacterial infections. This review discusses the aspects of Pth that relate to its history and biochemistry and its physiological connections with various cellular factors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29024-0
2006-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2191.html?itemId=/content/journal/micro/10.1099/mic.0.29024-0&mimeType=html&fmt=ahah

References

  1. Allen, G. S., Zavialov, A., Gursky, R., Ehrenberg, M. & Frank, J. ( 2005; ). The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121, 703–712.[CrossRef]
    [Google Scholar]
  2. Atherly, A. G. & Menninger, J. R. ( 1972; ). Mutant Escherichia coli strain with temperature sensitive peptidyl-transfer RNA hydrolase. Nature New Biol 240, 245–246.
    [Google Scholar]
  3. Cuzin, F., Kretchmer, N., Greenberg, R. E., Hurwitz, R. & Chapeville, F. ( 1967; ). Enzymatic hydrolysis of N-substituted aminoacyl-tRNA. Proc Natl Acad Sci U S A 58, 2079–2086.[CrossRef]
    [Google Scholar]
  4. De Groot, N., Groner, Y. & Lapidot, Y. ( 1969; ). Peptidyl-tRNA. VII. Substrate specificity of peptidyl-tRNA hydrolase. Biochim Biophys Acta 186, 286–296.[CrossRef]
    [Google Scholar]
  5. De Pereda, J. M., Waas, W. F., Jan, Y., Ruoslahti, E., Schimmel, P. & Pascual, J. ( 2004; ). Crystal structure of a human peptidyl-tRNA hydrolase reveals a new fold and suggests basis for a bifunctional activity. J Biol Chem 279, 8111–8115.[CrossRef]
    [Google Scholar]
  6. Dutka, S., Meinnel, T., Lazennec, C., Mechulam, Y. & Blanquet, S. ( 1993; ). Role of the 1-72 base pair in tRNAs for the activity of Escherichia coli peptidyl-tRNA hydrolase. Nucleic Acids Res 21, 4025–4030.[CrossRef]
    [Google Scholar]
  7. Fromant, M., Plateau, P., Schmitt, E., Mechulam, Y. & Blanquet, S. ( 1999; ). Receptor site for the 5′-phosphate of elongator tRNAs governs substrate selection by peptidyl-tRNA hydrolase. Biochemistry 38, 4982–4987.[CrossRef]
    [Google Scholar]
  8. Fromant, M., Plateau, P. & Blanquet, S. ( 2000; ). Function of the extra 5′-phosphate carried by histidine tRNA. Biochemistry 39, 4062–4067.[CrossRef]
    [Google Scholar]
  9. Fromant, M., Ferri-Fioni, M. L., Plateau, P. & Blanquet, S. ( 2003; ). Peptidyl-tRNA hydrolase from Sulfolobus solfataricus. Nucleic Acids Res 31, 3227–3235.[CrossRef]
    [Google Scholar]
  10. Fromant, M., Schmitt, E., Mechulam, Y., Lazennec, C., Plateau, P. & Blanquet, S. ( 2005; ). Crystal structure at 1.8 Å resolution and identification of active site residues of Sulfolobus solfataricus peptidyl-tRNA hydrolase. Biochemistry 44, 4294–4301.[CrossRef]
    [Google Scholar]
  11. García-Villegas, M. R., De La Vega, F. M., Galindo, J. M., Segura, M., Buckingham, R. H. & Guarneros, G. ( 1991; ). Peptidyl-tRNA hydrolase is involved in inhibition of host protein synthesis. EMBO J 10, 3549–3555.
    [Google Scholar]
  12. Goodall, J. J., Chen, G. J. & Page, M. G. ( 2004; ). Essential role of histidine 20 in the catalytic mechanism of Escherichia coli peptidyl-tRNA hydrolase. Biochemistry 43, 4583–4591.[CrossRef]
    [Google Scholar]
  13. Gross, M., Crow, P. & White, J. ( 1992; ). The site of hydrolysis by rabbit reticulocyte peptidyl-tRNA hydrolase is the 3′-AMP terminus of susceptible tRNA substrates. J Biol Chem 267, 2080–2086.
    [Google Scholar]
  14. Heurgue-Hamard, V., Mora, L., Guarneros, G. & Buckingham, R. H. ( 1996; ). The growth defect in Escherichia coli deficient in peptidyl-tRNA hydrolase is due to starvation for Lys-tRNALys. EMBO J 15, 2826–2833.
    [Google Scholar]
  15. Heurgue-Hamard, V., Karimi, R., Mora, L., MacDougall, J., Leboeuf, C., Grentzmann, G., Ehrenberg, M. & Buckingham, R. H. ( 1998; ). Ribosome release factor RF4 and termination factor RF3 are involved in dissociation of peptidyl-tRNA from the ribosome. EMBO J 17, 808–816.[CrossRef]
    [Google Scholar]
  16. Heurgue-Hamard, V., Dincbas, V., Buckingham, R. H. & Ehrenberg, M. ( 2000; ). Origins of minigene-dependent growth inhibition in bacterial cells. EMBO J 19, 2701–2709.[CrossRef]
    [Google Scholar]
  17. Jan, Y., Matter, M., Pai, J. T., Chen, Y. L., Pilch, J., Komatsu, M., Ong, E., Fukuda, M. & Ruoslahti, E. ( 2004; ). A mitochondrial protein, Bit1, mediates apoptosis regulated by integrins and Groucho/TLE corepressors. Cell 116, 751–762.[CrossRef]
    [Google Scholar]
  18. Jorgensen, F. & Kurland, C. G. ( 1990; ). Processivity errors of gene expression in Escherichia coli. J Mol Biol 215, 511–521.[CrossRef]
    [Google Scholar]
  19. Jost, J. P. & Bock, R. M. ( 1969; ). Enzymatic hydrolysis of N-substituted aminoacyl transfer ribonucleic acid in yeast. J Biol Chem 244, 5866–5873.
    [Google Scholar]
  20. Karimi, R., Pavlov, M. Y., Heurgue-Hamard, V., Buckingham, R. H. & Ehrenberg, M. ( 1998; ). Initiation factors IF1 and IF2 synergistically remove peptidyl-tRNAs with short polypeptides from the P-site of translating Escherichia coli ribosomes. J Mol Biol 281, 241–252.[CrossRef]
    [Google Scholar]
  21. Kössel, H. ( 1970; ). Purification and properties of peptidyl-tRNA hydrolase from Escherichia coli. Biochim Biophys Acta 204, 191–202.[CrossRef]
    [Google Scholar]
  22. Kössel, H. & RajBhandary, U. L. ( 1968; ). Studies on polynucleotides. LXXXVI. Enzymatic hydrolysis of N-acylaminoacyl-transfer RNA. J Mol Biol 273, 389–401.
    [Google Scholar]
  23. Manley, J. L. ( 1978; ). Synthesis and degradation of termination and premature-termination fragments of beta-galactosidase in vitro and in vivo. J Mol Biol 125, 407–432.[CrossRef]
    [Google Scholar]
  24. Menez, J., Buckingham, R. H., de Zamaroczy, M. & Campeli, C. K. ( 2002a; ). Peptidyl-tRNA hydrolase in Bacillus subtilis, encoded by spoVC, is essential to vegetative growth, whereas the homologous enzyme in Saccharomyces cerevisiae is dispensable. Mol Microbiol 45, 123–129.[CrossRef]
    [Google Scholar]
  25. Menez, J., Heurgue-Hamard, V. & Buckingham, R. H. ( 2002b; ). Sequestration of specific tRNA species cognate to the last sense codon of an overproduced gratuitous protein. Nucleic Acids Res 28, 4725–4732.
    [Google Scholar]
  26. Menninger, J. R. ( 1976; ). Peptidyl transfer RNA dissociates during protein synthesis from ribosomes of Escherichia coli. J Biol Chem 251, 3392–3398.
    [Google Scholar]
  27. Menninger, J. R. ( 1979; ). Accumulation of peptidyl-tRNA is lethal to Escherichia coli. J Bacteriol 137, 694–696.
    [Google Scholar]
  28. Menninger, J. R., Caplan, A. B., Gingrich, P. K. & Atherly, A. G. ( 1983; ). Tests of the ribosome editor hypothesis. II. Relaxed (relA) and stringent (relA+ ) E. coli differ in rates of dissociation of peptidyl-tRNA from ribosomes. Mol Gen Genet 190, 215–221.[CrossRef]
    [Google Scholar]
  29. Powers, R., Mirkovic, N., Goldsmith-Fischman, S. & 12 other authors ( 2005; ). Solution structure of Archaeglobus fulgidis peptidyl-tRNA hydrolase (Pth2) provides evidence for an extensive conserved family of Pth2 enzymes in archea, bacteria, and eukaryotes. Protein Sci 14, 2849–2861.[CrossRef]
    [Google Scholar]
  30. Rao, A. R. & Varshney, U. ( 2001; ). Specific interaction between the ribosome recycling factor and the elongation factor G from Mycobacterium tuberculosis mediates peptidyl-tRNA release and ribosome recycling in Escherichia coli. EMBO J 20, 2977–2988.[CrossRef]
    [Google Scholar]
  31. Rosas-Sandoval, G., Ambrogelly, A., Rinehart, J., Wei, D., Cruz-Vera, L. R., Graham, D. E., Stetter, K. O., Guarneros, G. & Soll, D. ( 2002; ). Orthologs of a novel archaeal and of the bacterial peptidyl-tRNA hydrolase are nonessential in yeast. Proc Natl Acad Sci U S A 99, 16707–16712.[CrossRef]
    [Google Scholar]
  32. Schmitt, E., Mechulam, Y., Fromant, M., Plateau, P. & Blanquet, S. ( 1997; ). Crystal structure at 1.2 Å resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase. EMBO J 16, 4760–4769.[CrossRef]
    [Google Scholar]
  33. Schulman, L. H. & Pelka, H. ( 1975; ). The structural basis for the resistance of Escherichia coli formylmethionyl transfer ribonucleic acid to cleavage by Escherichia coli peptidyl transfer ribonucleic acid hydrolase. J Biol Chem 250, 542–547.
    [Google Scholar]
  34. Shiloach, J., Lapidot, Y. & de Groot, N. ( 1975; ). The specificity of peptidyl-tRNA hydrolase from E. coli. FEBS Lett 57, 130–133.[CrossRef]
    [Google Scholar]
  35. Sickmann, A., Reinders, J., Wagner, Y. & 10 other authors ( 2003; ). The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100, 13207–13212.[CrossRef]
    [Google Scholar]
  36. Singh, N. S. & Varshney, U. ( 2004; ). A physiological connection between tmRNA and peptidyl-tRNA hydrolase functions in Escherichia coli. Nucleic Acids Res 32, 6028–6037.[CrossRef]
    [Google Scholar]
  37. Singh, N. S., Das, G., Seshadri, A., Sangeetha, R. & Varshney, U. ( 2005; ). Evidence for a role of initiation factor 3 in recycling of ribosomal complexes stalled on mRNAs in Escherichia coli. Nucleic Acids Res 33, 5591–5601.[CrossRef]
    [Google Scholar]
  38. Thanedar, S., Kumar, N. V. & Varshney, U. ( 2000; ). The fate of the initiator tRNAs is sensitive to the critical balance between interacting proteins. J Biol Chem 275, 20361–20367.[CrossRef]
    [Google Scholar]
  39. Vivanco-Dominguez, S., Cruz-Vera, L. R. & Guarneros, G. ( 2006; ). Excess of charged tRNALys maintains low levels of peptidyl-tRNA hydrolase in pth Ts mutants at a non-permissive temperature. Nucleic Acids Res 34, 1564–1570.[CrossRef]
    [Google Scholar]
  40. Vogel, Z., Vogel, T., Zamir, A. & Elson, D. ( 1971; ). The protection by 70 S ribosomes of N-acyl-aminoacyl-tRNA against cleavage by peptidyl-tRNA hydrolase and its use to assay ribosomal association. Eur J Biochem 21, 582–592.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29024-0
Loading
/content/journal/micro/10.1099/mic.0.29024-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error