1887

Abstract

In , quorum sensing constitutes a highly complex cell-to-cell communication system that, along with the cognate acylhomoserine lactone signals and regulators LasR and RhlR, modulates the production of virulence factors and a wide range of metabolic functions. In a previous paper, the authors reported that mismatch repair disruption in results in the spontaneous and reproducible emergence of defined morphological colony variants after a relatively short period of cultivation in an aerated rich medium, in contrast to the non-mutator parental strain, which does not display any kind of diversification under identical incubation conditions. One of the morphotypical variants, mS2, emerges at a high frequency and displays differences in virulence traits that could be regulated by major quorum-sensing regulators. The present study shows that mS2 variants had defective LasR function due to simple but different point mutations along the gene sequence, indicating that LasR inactivation is the main cause of mS2 phenotypic diversification. Moreover, it was determined that a non-functional LasR would confer a selective advantage in the late stationary phase, since viability was notably higher for mS2. Interestingly, in all mS2 variants analysed, no sequence alterations were found in the and genes, suggesting that the selective pressures for GacA/RhlR and LasR were not the same and differed from those in other species, which, when incubated in nutrient-rich liquid stationary-phase cultures, show specific high instability in the genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29021-0
2007-01-01
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/225.html?itemId=/content/journal/micro/10.1099/mic.0.29021-0&mimeType=html&fmt=ahah

References

  1. Aendekerk S., Ghysels B., Cornelis P., Baysse C. 2002; Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 148:2371–2381
    [Google Scholar]
  2. Ausubel F., Brent R., Kingston R., Moore D., Seidman J., Smith J., Struhl K. editors 1992 Short Protocols in Molecular Biology , 2nd edn. New York: Greene Publishing Associates;
    [Google Scholar]
  3. Bull C. T., Duffy B., Voisard C., Defago G., Keel C., Haas D. 2001; Characterization of spontaneous gacS and gacA regulatory mutants of Pseudomonas fluorescens biocontrol strain CHAO. Antonie Van Leeuwenhoek 79:327–336 [CrossRef]
    [Google Scholar]
  4. Cabrol S., Olliver A., Pier G. B., Andremont A., Ruimy R. 2003; Transcription of quorum-sensing system genes in clinical and environmental isolates of Pseudomonas aeruginosa . J Bacteriol 185:7222–7230 [CrossRef]
    [Google Scholar]
  5. Cha C., Gao P., Chen Y. C., Shaw P. D., Farrand S. K. 1998; Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11:1119–1129 [CrossRef]
    [Google Scholar]
  6. Chilton M. D., Currier T. C., Farrand S. K., Benedecht A. J., Gordont M. P., Nester E. W. 1974; Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci U S A 71:3672–3676 [CrossRef]
    [Google Scholar]
  7. Chopra I., O'Neill A. J., Miller K. 2003; The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist Updat 6:137–145 [CrossRef]
    [Google Scholar]
  8. Denamour E., Matic I. 2006; Evolution of mutation rates in bacteria. Mol Microbiol 60:820–827 [CrossRef]
    [Google Scholar]
  9. Dénervaud V., TuQuoc P., Blanc D., Reimmann C., Haas D., van Delden C. 2004; Characterization of cell-to-cell signalling deficient Pseudomonas strains colonizing intubated patients. J Clin Microbiol 42:554–562 [CrossRef]
    [Google Scholar]
  10. Duffy B. K., Defago G. 2000; Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorecens biocontrol strains. Appl Environ Microbiol 66:3142–3150 [CrossRef]
    [Google Scholar]
  11. Gallagher L. A., Manoil C. 2001; Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214 [CrossRef]
    [Google Scholar]
  12. Giraud A., Matic I., Tenaillon O., Clara A., Radman M., Fons M., Taddei F. 2001; Cost and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291:2606–2608 [CrossRef]
    [Google Scholar]
  13. Hamood A. D., Griswold J., Colmer J. 1996; Characterization of elastase-deficient clinical isolates of Pseudomonas aeruginosa . Infect Immun 64:3154–3160
    [Google Scholar]
  14. Heeb S., Haas D. 2001; Regulatory roles of the GacA/GacS two-component system in plant-associated and other Gram-negative bacteria. Mol Plant Microbe Interact 14:1351–1363 [CrossRef]
    [Google Scholar]
  15. Heurlier K., Denervaud V., Haenni M., Guy L., Krishnapillai V., Haas D. 2005; Quorum-sensing-negative ( lasR ) mutants of Pseudomonas aeruginosa avoid cell lysis and death. J Bacteriol 187:4875–4883 [CrossRef]
    [Google Scholar]
  16. Heurlier K., Denervaud V., Haas D. 2006; Impact on quorum sensing on fitness of Pseudomonas aeruginosa . Int J Med Microbiol 296:93–102 [CrossRef]
    [Google Scholar]
  17. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C. other authors 2003; Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 100:14339–14344 [CrossRef]
    [Google Scholar]
  18. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301
    [Google Scholar]
  19. Kiratisin P., Tucker K. D., Passador L. 2002; LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol 184:4912–4919 [CrossRef]
    [Google Scholar]
  20. Kunkel T. A., Erie D. A. 2005; DNA mismatch repair. Annu Rev Biochem 74:681–710 [CrossRef]
    [Google Scholar]
  21. LeClerc J. E., Baouguang L., Payne W. L., Cebula T. A. 1996; High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208–1211 [CrossRef]
    [Google Scholar]
  22. Levy D. D., Cebula T. A. 2001; Fidelity of replication of repetitive DNA in mutS and repair proficient Escherichia coli . Mutat Res 474:1–14 [CrossRef]
    [Google Scholar]
  23. Luo Z. Q., Su S., Farrand S. K. 2003; In situ activation of the quorum-sensing transcription factor TraR by cognate and noncognate acyl-homoserine lactone ligands: kinetics and consequences. J Bacteriol 185:5665–5672 [CrossRef]
    [Google Scholar]
  24. Lyczak J. B., Cannon C. L., Pier G. B. 2002; Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222 [CrossRef]
    [Google Scholar]
  25. Maciá M. D., Blanquer D. Togores B., Sauleda J., Oliver A, Pérez J. L. 2005; Hypermutation is a key factor in development of multiple antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother 49:3382–3386 [CrossRef]
    [Google Scholar]
  26. Martin C., Ichou M. A., Massicot P., Goudeau A., Quentin R. 1995; Genetic diversity of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis revealed by restriction fragment length polymorphism of the rRNA gene region. J Clin Microbiol 33:1461–1466
    [Google Scholar]
  27. Matic I., Radman M., Taddei F., Picard B., Doit C., Bingen E., Denamur E., Elion J. 1997; Highly variable mutation rates in commensal and pathogenic Escherichia coli . Science 277:1833–1834 [CrossRef]
    [Google Scholar]
  28. McClean K. H., Winson M. K., Fish L., Taylor A., Chhabra S. R., Camara M., Daykin M., Lamb J. H., Swift S. other authors 1997; Quorum sensing and Chromobacterium violaceum : exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711 [CrossRef]
    [Google Scholar]
  29. McKnight K. H., Iglewski B. H., Pesci E. C. 2000; The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol 182:2702–2708 [CrossRef]
    [Google Scholar]
  30. Modrich P., Lahue R. 1996; Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65:101–133 [CrossRef]
    [Google Scholar]
  31. Oliver A., Canton R., Campo P., Baquero F., Blazquez J. 2000; High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254 [CrossRef]
    [Google Scholar]
  32. Oliver A., Baquero F., Blázquez J. 2002; The mismatch repair system ( mutS , mutL and uvrD genes) in Pseudomonas aeruginosa : molecular characterization of naturally occurring mutants. Mol Microbiol 43:1641–1650 [CrossRef]
    [Google Scholar]
  33. Parkins M. D., Ceri H., Storey D. G. 2001; Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40:1215–1227 [CrossRef]
    [Google Scholar]
  34. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol 179:3127–3132
    [Google Scholar]
  35. Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., Iglewski B. H. 1999; Quinolone signalling in the cell-to-cell communication system of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 96:11229–11234 [CrossRef]
    [Google Scholar]
  36. Pessi G., Haas D. 2000; Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa . J Bacteriol 182:6940–6949 [CrossRef]
    [Google Scholar]
  37. Pessi G., Williams F., Hindle Z., Heurlier K., Holden M. T., Camara M., Haas D., Williams P. 2001; The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa . J Bacteriol 183:6676–6683 [CrossRef]
    [Google Scholar]
  38. Pezza R. J., Smania A. M., Barra J. L., Argaraña C. E. 2002; Nucleotides and heteroduplex DNA preserve the active conformation of Pseudomonas aeruginosa MutS by preventing protein oligomerization. Biochem J 361:87–95 [CrossRef]
    [Google Scholar]
  39. Reimmann C., Beyeler M., Latifi A., Winteler H., Foglino M., Lazdunski A., Haas D. 1997; The global activator GacA of Pseudomonas aeruginosa PAO1 positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309–319 [CrossRef]
    [Google Scholar]
  40. Robbins-Manke J. L., Zdraveski Z. Z., Marinus M., Essigmann J. M. 2005; Analysis of global gene expression and double-strand-break formation in DNA adenine methyltransferase- and mismatch repair-deficient E scherichia coli . J Bacteriol 187:7027–7037 [CrossRef]
    [Google Scholar]
  41. Salunkhe P., Smart C. H., Morgan J. A., Panagea S., Walshaw M. J., Hart C. A., Geffers R., Winstanley C, Tümmler B. 2005; A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol 187:4908–4920 [CrossRef]
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Schaaper R. M., Dunn R. L. 1987; Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A 84:6220–6224 [CrossRef]
    [Google Scholar]
  44. Schaber J. A., Carty N. L., McDonald N. A., Graham E. D., Cheluvappa R., Griswold J. A., Hamood A. N. 2004; Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa . J Med Microbiol 53:841–853 [CrossRef]
    [Google Scholar]
  45. Schuster M., Greenberg E. P. 2006; A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa . Int J Med Microbiol 296:73–81 [CrossRef]
    [Google Scholar]
  46. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079 [CrossRef]
    [Google Scholar]
  47. Shaw P. D., Ping G., Daly S. L., Cha C., Cronan J. E., Rinehart K. L., Farrand S. K. 1997; Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94:6036–6041 [CrossRef]
    [Google Scholar]
  48. Smania A. M., Segura I., Pezza R. J., Becerra C., Albesa I., Argaraña C. E. 2004; Emergence of phenotypic variants upon mismatch repair disruption in Pseudomonas aeruginosa . Microbiology 150:1327–1338 [CrossRef]
    [Google Scholar]
  49. Smith R. S., Iglewski B. H. 2003a; Pseudomonas aeruginosa quorum sensing systems and virulence. Curr Opin Microbiol 6:56–60 [CrossRef]
    [Google Scholar]
  50. Smith R. S., Iglewski B. H. 2003b; Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest 112:1460–1465 [CrossRef]
    [Google Scholar]
  51. Sokol P. A., Ohman D. E., Iglewski B. H. 1979; A more sensitive plate assay for detection of protease production by Pseudomanas aeruginosa . J Clin Microbiol 9:538–540
    [Google Scholar]
  52. Taddei F., Radman M., Maynard-Smith J., Toupance B., Gouyon P. H., Godelle B. 1997; Role of mutator alleles in adaptive evolution. Nature 19:700–702
    [Google Scholar]
  53. Tan M. W., Mahajan-Miklos S., Ausubel F. M. 1999a; Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A 96:715–720 [CrossRef]
    [Google Scholar]
  54. Tan M., Rahme L. G., Sternberg J. A., Tompkins R. G., Ausubel F. M. 1999b; Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A 96:2408–2413 [CrossRef]
    [Google Scholar]
  55. van Delden C. Pesci E. C., Pearson J. P., Iglewski B. H. 1998; Starvation selection restores elastase and rhamnolipid production in a Pseudomonas aeruginosa quorum-sensing mutant. Infect Immun 66:4499–4502
    [Google Scholar]
  56. Vannini A., Volpari C., Gargioli C., Muraglia E., Cortese R., De Francesco R., Neddermann P., Marco S. D. 2002; The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J 17:4393–4401
    [Google Scholar]
  57. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H. 2003; Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095 [CrossRef]
    [Google Scholar]
  58. Watson B. T. C., Currier M. P., Gordon M. D., Chilton E., Nester W. 1975; Plasmid required for virulence of Agrobacterium tumefaciens . J Bacteriol 123:255–264
    [Google Scholar]
  59. Whiteley M., Lee K. M., Greenberg E. P. 1999; Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 96:13904–13909 [CrossRef]
    [Google Scholar]
  60. Yates E. A., Philipp B., Buckley C., Atkinson S., Chhabra S. R., Sockett R. E., Goldner M., Dessaux Y., Camara M. other authors 2002; N -Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa . Infect Immun 70:5635–5646 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.29021-0
Loading
/content/journal/micro/10.1099/mic.0.29021-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error