1887

Abstract

is naturally competent for transformation, with a transformation system similar to that of that preferentially takes up DNA bearing uptake signal sequences (USS) with the same 9-base USS core. This study examined the function of the extended 29-base USS, which comprises a highly conserved 1st region (containing the 9-base core) and 2nd and 3rd semi-conserved AT-rich regions, in transformation of . Transformation frequency was not affected by either location (in middle or at 5′ end) or quantity (one or two) of USS in donor DNA. Relative transformation efficiencies (in comparison to the positive control) were 28–67 % for linear DNA with single-base mutations in the USS 1st region, and 47 % and 73 %, respectively, for linear DNA with USS that contained either a non-consensus 2nd or a non-consensus 3rd region. Plasmids with a stand-alone 1st or a stand-alone 2nd–3rd region exhibited 21 % and 6 % relative transformation efficiencies, respectively. It was also noted that and were similar in the frequencies and distribution patterns of USS in their genomes. In conclusion, all three regions of the extended 29-base USS are required for optimum transformation in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29018-0
2006-11-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3319.html?itemId=/content/journal/micro/10.1099/mic.0.29018-0&mimeType=html&fmt=ahah

References

  1. Albritton, W. L., Setlow, J. K., Thomas, M., Sottnek, F. & Steigerwalt, A. G. ( 1984; ). Heterospecific transformation in the genus Haemophilus. Mol Gen Genet 193, 358–363.[CrossRef]
    [Google Scholar]
  2. Albritton, W. L., Setlow, J. K., Thomas, M. L. & Sottnek, F. O. ( 1986; ). Relatedness within the family Pasteurellaceae as determined by genetic transformation. Int J Syst Bacteriol 36, 103–106.[CrossRef]
    [Google Scholar]
  3. Asikainen, S. & Chen, C. ( 1999; ). Oral ecology and person-to-person transmission of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Periodontol 2000 20, 65–81.[CrossRef]
    [Google Scholar]
  4. Bakkali, M., Chen, T. Y., Lee, H. C. & Redfield, R. J. ( 2004; ). Evolutionary stability of DNA uptake signal sequences in the Pasteurellaceae. Proc Natl Acad Sci U S A 101, 4513–4518.[CrossRef]
    [Google Scholar]
  5. Chen, W., Wang, Y. & Chen, C. ( 2005; ). Identification of a genomic island of Actinobacillus actinomycetemcomitans. J Periodontol 76, 2052–2060.[CrossRef]
    [Google Scholar]
  6. Danner, D. B., Deich, R. A., Sisco, K. L. & Smith, H. O. ( 1980; ). An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene 11, 311–318.[CrossRef]
    [Google Scholar]
  7. Dubnau, D. ( 1999; ). DNA uptake in bacteria. Annu Rev Microbiol 53, 217–244.[CrossRef]
    [Google Scholar]
  8. Fujise, O., Lakio, L., Wang, Y., Asikainen, S. & Chen, C. ( 2004; ). Clonal distribution of natural competence in Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol 19, 340–342.[CrossRef]
    [Google Scholar]
  9. Haase, E. M., Zmuda, J. L. & Scannapieco, F. A. ( 1999; ). Identification and molecular analysis of rough-colony-specific outer membrane proteins of Actinobacillus actinomycetemcomitans. Infect Immun 67, 2901–2908.
    [Google Scholar]
  10. Hacker, J. & Carniel, E. ( 2001; ). Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep 2, 376–381.[CrossRef]
    [Google Scholar]
  11. Hacker, J., Blum-Oehler, G., Muhldorfer, I. & Tschape, H. ( 1997; ). Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23, 1089–1097.[CrossRef]
    [Google Scholar]
  12. Hong, B. & Dewhirst, F. E. ( 2002; ). Haemophilus influenzae DNA uptake signal sequences are present in Actinobacillus actinomycetemcomitans and most other species in the family Pasteurellaceae. In The IADR/AADR/CADR 80th General Session (March 6–9, 2002) J Dent Res 81, special issue A, abstract 1448.
  13. Inouye, T., Ohta, H., Kokeguchi, S., Fukui, K. & Kato, K. ( 1990; ). Colonial variation and fimbriation of Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett 69, 13–18.[CrossRef]
    [Google Scholar]
  14. Ishihara, K., Honma, K., Miura, T., Kato, T. & Okuda, K. ( 1997; ). Cloning and sequence analysis of the fimbriae associated protein (fap) gene from Actinobacillus actinomycetemcomitans. Microb Pathog 23, 63–69.[CrossRef]
    [Google Scholar]
  15. Kachlany, S. C., Planet, P. J., Bhattacharjee, M. K., Kollia, E., DeSalle, R., Fine, D. H. & Figurski, D. H. ( 2000; ). Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in Bacteria and Archaea. J Bacteriol 182, 6169–6176.[CrossRef]
    [Google Scholar]
  16. Kolodrubetz, D., Dailey, T., Ebersole, J. & Kraig, E. ( 1989; ). Cloning and expression of the leukotoxin gene from Actinobacillus actinomycetemcomitans. Infect Immun 57, 1465–1469.
    [Google Scholar]
  17. Kraig, E., Dailey, T. & Kolodrubetz, D. ( 1990; ). Nucleotide sequence of the leukotoxin gene from Actinobacillus actinomycetemcomitans: homology to the alpha-hemolysin/leukotoxin gene family. Infect Immun 58, 920–929.
    [Google Scholar]
  18. Lally, E. T., Kieba, I. R., Demuth, D. R., Rosenbloom, J., Golub, E. E., Taichman, N. S. & Gibson, C. W. ( 1989; ). Identification and expression of the Actinobacillus actinomycetemcomitans leukotoxin gene. Biochem Biophys Res Commun 159, 256–262.[CrossRef]
    [Google Scholar]
  19. Lorenz, M. G. & Wackernagel, W. ( 1994; ). Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58, 563–602.
    [Google Scholar]
  20. Mayer, M. P., Bueno, L. C., Hansen, E. J. & DiRienzo, J. M. ( 1999; ). Identification of a cytolethal distending toxin gene locus and features of a virulence-associated region in Actinobacillus actinomycetemcomitans. Infect Immun 67, 1227–1237.
    [Google Scholar]
  21. Mintz, K. P. ( 2004; ). Identification of an extracellular matrix protein adhesin, EmaA, which mediates the adhesion of Actinobacillus actinomycetemcomitans to collagen. Microbiology 150, 2677–2688.[CrossRef]
    [Google Scholar]
  22. Planet, P. J., Kachlany, S. C., Fine, D. H., DeSalle, R. & Figurski, D. H. ( 2003; ). The Widespread Colonization Island of Actinobacillus actinomycetemcomitans. Nat Genet 34, 193–198.[CrossRef]
    [Google Scholar]
  23. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  24. Shenker, B. J., Hoffmaster, R. H., McKay, T. L. & Demuth, D. R. ( 2000; ). Expression of the cytolethal distending toxin (Cdt) operon in Actinobacillus actinomycetemcomitans: evidence that the CdtB protein is responsible for G2 arrest of the cell cycle in human T cells. J Immunol 165, 2612–2618.[CrossRef]
    [Google Scholar]
  25. Slots, J. ( 1999; ). Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in periodontal disease: introduction. Periodontol 2000 20, 7–13.[CrossRef]
    [Google Scholar]
  26. Smeets, L. C. & Kusters, J. G. ( 2002; ). Natural transformation in Helicobacter pylori: DNA transport in an unexpected way. Trends Microbiol 10, 159–162.[CrossRef]
    [Google Scholar]
  27. Smith, H. O., Tomb, J. F., Dougherty, B. A., Fleischmann, R. D. & Venter, J. C. ( 1995; ). Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Science 269, 538–540.[CrossRef]
    [Google Scholar]
  28. Smith, H. O., Gwinn, M. L. & Salzberg, S. L. ( 1999; ). DNA uptake signal sequences in naturally transformable bacteria. Res Microbiol 150, 603–616.[CrossRef]
    [Google Scholar]
  29. Sugai, M., Kawamoto, T., Peres, S. Y., Ueno, Y., Komatsuzawa, H., Fujiwara, T., Kurihara, H., Suginaka, H. & Oswald, E. ( 1998; ). The cell cycle-specific growth-inhibitory factor produced by Actinobacillus actinomycetemcomitans is a cytolethal distending toxin. Infect Immun 66, 5008–5019.
    [Google Scholar]
  30. Thomson, V. J., Bhattacharjee, M. K., Fine, D. H., Derbyshire, K. M. & Figurski, D. H. ( 1999; ). Direct selection of IS903 transposon insertions by use of a broad-host-range vector: isolation of catalase-deficient mutants of Actinobacillus actinomycetemcomitans. J Bacteriol 181, 7298–7307.
    [Google Scholar]
  31. Tønjum, T., Bukholm, G. & Bøvre, K. ( 1990; ). Identification of Haemophilus aprhophilus and Actinobacillus actinomycetemcomitans by DNA-DNA hybridization and genetic transformation. J Clin Microbiol 28, 1994–1998.
    [Google Scholar]
  32. Wang, Y., Goodman, S. D., Redfield, R. J. & Chen, C. ( 2002; ). Natural transformation and DNA uptake signal sequences in Actinobacillus actinomycetemcomitans. J Bacteriol 184, 3442–3449.[CrossRef]
    [Google Scholar]
  33. Wang, Y., Shi, W., Chen, W. & Chen, C. ( 2003; ). Type IV pilus gene homologs pilABCD are required for natural transformation in Actinobacillus actinomycetemcomitans. Gene 312, 249–255.[CrossRef]
    [Google Scholar]
  34. Wang, Y., Liu, A. & Chen, C. ( 2005; ). Genetic basis for conversion of rough-to-smooth colony morphology in Actinobacillus actinomycetemcomitans. Infect Immun 73, 3749–3753.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29018-0
Loading
/content/journal/micro/10.1099/mic.0.29018-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error