1887

Abstract

, an oral bacterium associated with periodontal disease, requires haemin for growth. Although several multigenic clusters encoding haemin-uptake systems are present on the genome of , little is known regarding their transcriptional organization and expression. This study identified a 23 kDa iron-regulated haemin-binding protein encoded by a larger than previously reported variant of . It was shown that the locus is larger than previously reported and is composed of six genes, , encoding a novel hybrid haemin-uptake system. The locus has an operonic organization and the transcriptional start site is located 292 bp upstream of . The data indicate that the regulation of the operon is iron-dependent. Interestingly, differential regulation within the operon was demonstrated, resulting in excess of the message encoding the outer-membrane proteins when compared to the full-length transcript. In addition, the transcript is more prevalent than the transcript. Secondary structure analysis of the mRNA predicted the formation of several potential stem–loops in the 5′ ends of - and -specific mRNAs, consistent with the differential regulation observed. Finally, it was demonstrated that haemin binding and uptake are elevated in iron-depleted conditions and are reduced 45 % and 70 %, respectively, in an -deficient strain when compared to the parental strain, indicating that the locus plays a major role in haemin acquisition in . Since homologues of the locus were also found in , and , these findings may have implications for a better understanding of haemin acquisition in those organisms as well.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29011-0
2006-11-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3367.html?itemId=/content/journal/micro/10.1099/mic.0.29011-0&mimeType=html&fmt=ahah

References

  1. Aduse-Opoku J, Slaney J. M, Rangarajan M, Muir J, Young K. A, Curtis M. A. 1997; The Tla protein of Porphyromonas gingivalis W50: a homolog of the RI protease precursor (PrpRI) is an outer membrane receptor required for growth on low levels of hemin. J Bacteriol 179:4778–4788
    [Google Scholar]
  2. Ahn Y. J, Park S. K, Oh J. W, Sun H. Y, Shin S. H. 2004; Bacterial growth in amniotic fluid is dependent on the iron-availability and the activity of bacterial iron-uptake system. J Korean Med Sci 19:333–340 [CrossRef]
    [Google Scholar]
  3. Andrews S. C, Robinson A. K, Rodriguez-Quinones F. 2003; Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237 [CrossRef]
    [Google Scholar]
  4. Baughn A. D, Malamy M. H. 2003; The essential role of fumarate reductase in haem-dependent growth stimulation of Bacteroides fragilis . Microbiology 149:1551–1558 [CrossRef]
    [Google Scholar]
  5. Beaven G. H, Chen S. H, d'Albis A, Gratzer W. B. 1974; A spectroscopic study of the haemin–human-serum-albumin system. Eur J Biochem 41:539–546 [CrossRef]
    [Google Scholar]
  6. Bramanti T. E, Holt S. C. 1991; Roles of porphyrins and host iron transport proteins in regulation of growth of Porphyromonas gingivalis W50. J Bacteriol 173:7330–7339
    [Google Scholar]
  7. Clarke T. E, Tari L. W, Vogel H. J. 2001; Structural biology of bacterial iron uptake systems. Curr Top Med Chem 1:7–30 [CrossRef]
    [Google Scholar]
  8. Cornelissen C. N. 2003; Transferrin-iron uptake by gram-negative bacteria. Front Biosci 8:D836–D847 [CrossRef]
    [Google Scholar]
  9. Curtis M. A, Kuramitsu H. K, Lantz M, Macrina F. L, Nakayama K, Potempa J, Reynolds E. C, Aduse-Opoku J. 1999; Molecular genetics and nomenclature of proteases of Porphyromonas gingivalis . J. Periodont Res 34:464–472 [CrossRef]
    [Google Scholar]
  10. Dashper S. G, Hendtlass A, Slakeski N, Jackson C, Cross K. J, Brownfield L, Hamilton R, Barr I, Reynolds E. C. 2000; Characterization of a novel outer membrane hemin-binding protein of Porphyromonas gingivalis . J Bacteriol 182:6456–6462 [CrossRef]
    [Google Scholar]
  11. Dashper S. G, Cross K. J, Slakeski N, Lissel P, Aulakh P, Moore C, Reynolds E. C. 2004; Hemoglobin hydrolysis and heme acquisition by Porphyromonas gingivalis . Oral Microbiol Immunol 19:50–56 [CrossRef]
    [Google Scholar]
  12. Ehrmann M, Ehrle R, Hofmann E, Boos W, Schlosser A. 1998; The ABC maltose transporter. Mol Microbiol 29:685–694 [CrossRef]
    [Google Scholar]
  13. Fletcher H. M, Schenkein H. A, Morgan R. M, Bailey K. A, Berry C. R, Macrina F. L. 1995; Virulence of a Porphyromonas gingivalis W83 mutant defective in the prtH gene. Infect Immun 63:1521–1528
    [Google Scholar]
  14. Fox C. H. 1992; New considerations in the prevalence of periodontal disease. Curr Opin Dent 2:5–11
    [Google Scholar]
  15. Francis R. T. Jr, Becker R. R. 1984; Specific indication of hemoproteins in polyacrylamide gels using a double-staining process. Anal Biochem 136:509–514 [CrossRef]
    [Google Scholar]
  16. Friedman Y. E, O'Brian M. R. 2003; A novel DNA-binding site for the ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum . J Biol Chem 278:38395–38401 [CrossRef]
    [Google Scholar]
  17. Genco C. A, Dixon D. W. 2001; Emerging strategies in microbial haem capture. Mol Microbiol 39:1–11 [CrossRef]
    [Google Scholar]
  18. Hawley D. K, McClure W. R. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255 [CrossRef]
    [Google Scholar]
  19. Hrkal Z, Vodrazka Z, Kalousek I. 1974; Transfer of heme from ferrihemoglobin and ferrihemoglobin isolated chains to hemopexin. Eur J Biochem 43:73–78 [CrossRef]
    [Google Scholar]
  20. Hwang P. K, Greer J. 1980; Interaction between hemoglobin subunits in the hemoglobin–haptoglobin complex. J Biol Chem 255:3038–3041
    [Google Scholar]
  21. Karunakaran T, Madden T, Kuramitsu H. 1997; Isolation and characterization of a hemin-regulated gene, hemR , from Porphyromonas gingivalis . J Bacteriol 179:1898–1908
    [Google Scholar]
  22. Khun H, Deved V, Wong H, Lee B. C. 2000; The Neisseria meningitidis fbpABC locus is transcribed as an operon. Infect Immun 68:7166–7171 [CrossRef]
    [Google Scholar]
  23. Kim S. J, Chu L, Holt S. C. 1996; Isolation and characterization of a hemin-binding cell envelope protein from Porphyromonas gingivalis . Microb Pathog 21:65–70 [CrossRef]
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  25. Lee B. C. 1995; Quelling the red menace: haem capture by bacteria. Mol Microbiol 18:383–390 [CrossRef]
    [Google Scholar]
  26. Lewis J. P, Macrina F. L. 1998; IS195, an insertion sequence-like element associated with protease genes in Porphyromonas gingivalis . Infect Immun 66:3035–3042
    [Google Scholar]
  27. Lewis J. P, Dawson J. A, Hannis J. C, Muddiman D, Macrina F. L. 1999; Hemoglobinase activity of the lysine gingipain protease (Kgp) of Porphyromonas gingivalis W83. J Bacteriol 181:4905–4913
    [Google Scholar]
  28. Liu X, Sroka A, Potempa J, Genco C. A. 2004; Coordinate expression of the Porphyromonas gingivalis lysine-specific gingipain proteinase, Kgp, arginine-specific gingipain proteinase, RgpA, and the heme/hemoglobin receptor, HmuR. Biol Chem 385:1049–1057
    [Google Scholar]
  29. Liu X, Olczak T, Guo H. C, Dixon D. W, Genco C. A. 2006; Identification of amino acid residues involved in heme binding and hemoprotein utilization in the Porphyromonas gingivalis heme receptor HmuR. Infect Immun 74:1222–1232 [CrossRef]
    [Google Scholar]
  30. Mademidis A, Koster W. 1998; Transport activity of FhuA, FhuC, FhuD, and FhuB derivatives in a system free of polar effects, and stoichiometry of components involved in ferrichrome uptake. Mol Gen Genet 258:156–165 [CrossRef]
    [Google Scholar]
  31. McHugh J. P, Rodriguez-Quinones F, Abdul-Tehrani H, Svistunenko D. A, Poole R. K, Cooper C. E, Andrews S. C. 2003; Global iron-dependent gene regulation in Escherichia coli . A new mechanism for iron homeostasis. J Biol Chem 278:29478–29486 [CrossRef]
    [Google Scholar]
  32. Nelson K. E, Fleischmann R. D, DeBoy R. T. 20 other authors 2003; Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J Bacteriol 185:5591–5601 [CrossRef]
    [Google Scholar]
  33. Newbury S. F, Smith N. H, Higgins C. F. 1987a; Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51:1131–1143 [CrossRef]
    [Google Scholar]
  34. Newbury S. F, Smith N. H, Robinson E. C, Hiles I. D, Higgins C. F. 1987b; Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48:297–310 [CrossRef]
    [Google Scholar]
  35. Ochsner U. A, Johnson Z, Vasil M. L. 2000; Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa . Microbiology 146:185–198
    [Google Scholar]
  36. Olczak T, Dixon D. W, Genco C. A. 2001; Binding specificity of the Porphyromonas gingivalis heme and hemoglobin receptor HmuR, gingipain K, and gingipain R1 for heme, porphyrins, and metalloporphyrins. J Bacteriol 183:5599–5608 [CrossRef]
    [Google Scholar]
  37. Olczak T, Simpson W, Liu X, Genco C. A. 2005; Iron and heme utilization in Porphyromonas gingivalis . FEMS Microbiol Rev 29:119–144 [CrossRef]
    [Google Scholar]
  38. Palyada K, Threadgill D, Stintzi A. 2004; Iron acquisition and regulation in Campylobacter jejuni . J Bacteriol 186:4714–4729 [CrossRef]
    [Google Scholar]
  39. Panek H, O'Brian M. R. 2002; A whole genome view of prokaryotic haem biosynthesis. Microbiology 148:2273–2282
    [Google Scholar]
  40. Rao V. K, Krasan G. P, Hendrixson D. R, Dawid S, St Geme J. W. III 1999; Molecular determinants of the pathogenesis of disease due to non-typable Haemophilus influenzae . FEMS Microbiol Rev 23:99–129 [CrossRef]
    [Google Scholar]
  41. Rishi P, Woodward C. L, Kim W. K, Ricke S. C. 2004; Salmonella enterica serovar Typhimurium hilA-lacZY fusion gene response to iron chelation or supplementation in rich and minimal media. J Environ Sci Health B 39:861–870 [CrossRef]
    [Google Scholar]
  42. Ronpirin C, Jerse A. E, Cornelissen C. N. 2001; Gonococcal genes encoding transferrin-binding proteins A and B are arranged in a bicistronic operon but are subject to differential expression. Infect Immun 69:6336–6347 [CrossRef]
    [Google Scholar]
  43. Schifferle R. E, Shostad S. A, Bayers-Thering M. T, Dyer D. W, Neiders M. E. 1996; Effect of protoporphyrin IX limitation on Porphyromonas gingivalis . J Endod 22:352–355 [CrossRef]
    [Google Scholar]
  44. Sexton J. A, Pinkner J. S, Roth R, Heuser J. E, Hultgren S. J, Vogel J. P. 2004; The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J Bacteriol 186:1658–1666 [CrossRef]
    [Google Scholar]
  45. Simpson W, Olczak T, Genco C. A. 2000; Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis . J Bacteriol 182:5737–5748 [CrossRef]
    [Google Scholar]
  46. Slakeski N, Dashper S. G, Cook P, Poon C, Moore C, Reynolds E. C. 2000; A Porphyromonas gingivalis genetic locus encoding a heme transport system. Oral Microbiol Immunol 15:388–392 [CrossRef]
    [Google Scholar]
  47. Slots J, Bragd L, Wikstrom M, Dahlen G. 1986; The occurrence of Actinobacillus actinomycetemcomitans , Bacteroides gingivalis and Bacteroides intermedius in destructive periodontal disease in adults. J Clin Periodontol 13:570–577 [CrossRef]
    [Google Scholar]
  48. Stojiljkovic I, Hantke K. 1994; Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in Yersinia enterocolitica . Mol Microbiol 13:719–732 [CrossRef]
    [Google Scholar]
  49. Takahashi N, Sato T, Yamada T. 2000; Metabolic pathways for cytotoxic end product formation from glutamate- and aspartate-containing peptides by Porphyromonas gingivalis . J Bacteriol 182:4704–4710 [CrossRef]
    [Google Scholar]
  50. Thompson J. M, Jones H. A, Perry R. D. 1999; Molecular characterization of the hemin uptake locus (hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization. Infect Immun 67:3879–3892
    [Google Scholar]
  51. Towbin H, Staehelin T, Gordon J. 1992; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnology 24:145–149
    [Google Scholar]
  52. Vanderpool C. K, Armstrong S. K. 2001; The Bordetella bhu locus is required for heme iron utilization. J Bacteriol 183:4278–4287 [CrossRef]
    [Google Scholar]
  53. Williams G. D, Holt S. C. 1985; Characteristics of the outer membrane of selected oral Bacteroides species. Can J Microbiol 31:238–250 [CrossRef]
    [Google Scholar]
  54. Wyckoff E. E, Duncan D, Torres A. G, Mills M, Maase K, Payne S. M. 1998; Structure of the Shigella dysenteriae haem transport locus and its phylogenetic distribution in enteric bacteria. Mol Microbiol 28:1139–1152 [CrossRef]
    [Google Scholar]
  55. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.29011-0
Loading
/content/journal/micro/10.1099/mic.0.29011-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error