1887

Abstract

, an oral bacterium associated with periodontal disease, requires haemin for growth. Although several multigenic clusters encoding haemin-uptake systems are present on the genome of , little is known regarding their transcriptional organization and expression. This study identified a 23 kDa iron-regulated haemin-binding protein encoded by a larger than previously reported variant of . It was shown that the locus is larger than previously reported and is composed of six genes, , encoding a novel hybrid haemin-uptake system. The locus has an operonic organization and the transcriptional start site is located 292 bp upstream of . The data indicate that the regulation of the operon is iron-dependent. Interestingly, differential regulation within the operon was demonstrated, resulting in excess of the message encoding the outer-membrane proteins when compared to the full-length transcript. In addition, the transcript is more prevalent than the transcript. Secondary structure analysis of the mRNA predicted the formation of several potential stem–loops in the 5′ ends of - and -specific mRNAs, consistent with the differential regulation observed. Finally, it was demonstrated that haemin binding and uptake are elevated in iron-depleted conditions and are reduced 45 % and 70 %, respectively, in an -deficient strain when compared to the parental strain, indicating that the locus plays a major role in haemin acquisition in . Since homologues of the locus were also found in , and , these findings may have implications for a better understanding of haemin acquisition in those organisms as well.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29011-0
2006-11-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3367.html?itemId=/content/journal/micro/10.1099/mic.0.29011-0&mimeType=html&fmt=ahah

References

  1. Aduse-Opoku, J., Slaney, J. M., Rangarajan, M., Muir, J., Young, K. A. & Curtis, M. A. ( 1997; ). The Tla protein of Porphyromonas gingivalis W50: a homolog of the RI protease precursor (PrpRI) is an outer membrane receptor required for growth on low levels of hemin. J Bacteriol 179, 4778–4788.
    [Google Scholar]
  2. Ahn, Y. J., Park, S. K., Oh, J. W., Sun, H. Y. & Shin, S. H. ( 2004; ). Bacterial growth in amniotic fluid is dependent on the iron-availability and the activity of bacterial iron-uptake system. J Korean Med Sci 19, 333–340.[CrossRef]
    [Google Scholar]
  3. Andrews, S. C., Robinson, A. K. & Rodriguez-Quinones, F. ( 2003; ). Bacterial iron homeostasis. FEMS Microbiol Rev 27, 215–237.[CrossRef]
    [Google Scholar]
  4. Baughn, A. D. & Malamy, M. H. ( 2003; ). The essential role of fumarate reductase in haem-dependent growth stimulation of Bacteroides fragilis. Microbiology 149, 1551–1558.[CrossRef]
    [Google Scholar]
  5. Beaven, G. H., Chen, S. H., d'Albis, A. & Gratzer, W. B. ( 1974; ). A spectroscopic study of the haemin–human-serum-albumin system. Eur J Biochem 41, 539–546.[CrossRef]
    [Google Scholar]
  6. Bramanti, T. E. & Holt, S. C. ( 1991; ). Roles of porphyrins and host iron transport proteins in regulation of growth of Porphyromonas gingivalis W50. J Bacteriol 173, 7330–7339.
    [Google Scholar]
  7. Clarke, T. E., Tari, L. W. & Vogel, H. J. ( 2001; ). Structural biology of bacterial iron uptake systems. Curr Top Med Chem 1, 7–30.[CrossRef]
    [Google Scholar]
  8. Cornelissen, C. N. ( 2003; ). Transferrin-iron uptake by gram-negative bacteria. Front Biosci 8, D836–D847.[CrossRef]
    [Google Scholar]
  9. Curtis, M. A., Kuramitsu, H. K., Lantz, M., Macrina, F. L., Nakayama, K., Potempa, J., Reynolds, E. C. & Aduse-Opoku, J. ( 1999; ). Molecular genetics and nomenclature of proteases of Porphyromonas gingivalis. J. Periodont Res 34, 464–472.[CrossRef]
    [Google Scholar]
  10. Dashper, S. G., Hendtlass, A., Slakeski, N., Jackson, C., Cross, K. J., Brownfield, L., Hamilton, R., Barr, I. & Reynolds, E. C. ( 2000; ). Characterization of a novel outer membrane hemin-binding protein of Porphyromonas gingivalis. J Bacteriol 182, 6456–6462.[CrossRef]
    [Google Scholar]
  11. Dashper, S. G., Cross, K. J., Slakeski, N., Lissel, P., Aulakh, P., Moore, C. & Reynolds, E. C. ( 2004; ). Hemoglobin hydrolysis and heme acquisition by Porphyromonas gingivalis. Oral Microbiol Immunol 19, 50–56.[CrossRef]
    [Google Scholar]
  12. Ehrmann, M., Ehrle, R., Hofmann, E., Boos, W. & Schlosser, A. ( 1998; ). The ABC maltose transporter. Mol Microbiol 29, 685–694.[CrossRef]
    [Google Scholar]
  13. Fletcher, H. M., Schenkein, H. A., Morgan, R. M., Bailey, K. A., Berry, C. R. & Macrina, F. L. ( 1995; ). Virulence of a Porphyromonas gingivalis W83 mutant defective in the prtH gene. Infect Immun 63, 1521–1528.
    [Google Scholar]
  14. Fox, C. H. ( 1992; ). New considerations in the prevalence of periodontal disease. Curr Opin Dent 2, 5–11.
    [Google Scholar]
  15. Francis, R. T., Jr & Becker, R. R. ( 1984; ). Specific indication of hemoproteins in polyacrylamide gels using a double-staining process. Anal Biochem 136, 509–514.[CrossRef]
    [Google Scholar]
  16. Friedman, Y. E. & O'Brian, M. R. ( 2003; ). A novel DNA-binding site for the ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum. J Biol Chem 278, 38395–38401.[CrossRef]
    [Google Scholar]
  17. Genco, C. A. & Dixon, D. W. ( 2001; ). Emerging strategies in microbial haem capture. Mol Microbiol 39, 1–11.[CrossRef]
    [Google Scholar]
  18. Hawley, D. K. & McClure, W. R. ( 1983; ). Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11, 2237–2255.[CrossRef]
    [Google Scholar]
  19. Hrkal, Z., Vodrazka, Z. & Kalousek, I. ( 1974; ). Transfer of heme from ferrihemoglobin and ferrihemoglobin isolated chains to hemopexin. Eur J Biochem 43, 73–78.[CrossRef]
    [Google Scholar]
  20. Hwang, P. K. & Greer, J. ( 1980; ). Interaction between hemoglobin subunits in the hemoglobin–haptoglobin complex. J Biol Chem 255, 3038–3041.
    [Google Scholar]
  21. Karunakaran, T., Madden, T. & Kuramitsu, H. ( 1997; ). Isolation and characterization of a hemin-regulated gene, hemR, from Porphyromonas gingivalis. J Bacteriol 179, 1898–1908.
    [Google Scholar]
  22. Khun, H., Deved, V., Wong, H. & Lee, B. C. ( 2000; ). The Neisseria meningitidis fbpABC locus is transcribed as an operon. Infect Immun 68, 7166–7171.[CrossRef]
    [Google Scholar]
  23. Kim, S. J., Chu, L. & Holt, S. C. ( 1996; ). Isolation and characterization of a hemin-binding cell envelope protein from Porphyromonas gingivalis. Microb Pathog 21, 65–70.[CrossRef]
    [Google Scholar]
  24. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  25. Lee, B. C. ( 1995; ). Quelling the red menace: haem capture by bacteria. Mol Microbiol 18, 383–390.[CrossRef]
    [Google Scholar]
  26. Lewis, J. P. & Macrina, F. L. ( 1998; ). IS195, an insertion sequence-like element associated with protease genes in Porphyromonas gingivalis. Infect Immun 66, 3035–3042.
    [Google Scholar]
  27. Lewis, J. P., Dawson, J. A., Hannis, J. C., Muddiman, D. & Macrina, F. L. ( 1999; ). Hemoglobinase activity of the lysine gingipain protease (Kgp) of Porphyromonas gingivalis W83. J Bacteriol 181, 4905–4913.
    [Google Scholar]
  28. Liu, X., Sroka, A., Potempa, J. & Genco, C. A. ( 2004; ). Coordinate expression of the Porphyromonas gingivalis lysine-specific gingipain proteinase, Kgp, arginine-specific gingipain proteinase, RgpA, and the heme/hemoglobin receptor, HmuR. Biol Chem 385, 1049–1057.
    [Google Scholar]
  29. Liu, X., Olczak, T., Guo, H. C., Dixon, D. W. & Genco, C. A. ( 2006; ). Identification of amino acid residues involved in heme binding and hemoprotein utilization in the Porphyromonas gingivalis heme receptor HmuR. Infect Immun 74, 1222–1232.[CrossRef]
    [Google Scholar]
  30. Mademidis, A. & Koster, W. ( 1998; ). Transport activity of FhuA, FhuC, FhuD, and FhuB derivatives in a system free of polar effects, and stoichiometry of components involved in ferrichrome uptake. Mol Gen Genet 258, 156–165.[CrossRef]
    [Google Scholar]
  31. McHugh, J. P., Rodriguez-Quinones, F., Abdul-Tehrani, H., Svistunenko, D. A., Poole, R. K., Cooper, C. E. & Andrews, S. C. ( 2003; ). Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem 278, 29478–29486.[CrossRef]
    [Google Scholar]
  32. Nelson, K. E., Fleischmann, R. D., DeBoy, R. T. & 20 other authors ( 2003; ). Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J Bacteriol 185, 5591–5601.[CrossRef]
    [Google Scholar]
  33. Newbury, S. F., Smith, N. H. & Higgins, C. F. ( 1987a; ). Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51, 1131–1143.[CrossRef]
    [Google Scholar]
  34. Newbury, S. F., Smith, N. H., Robinson, E. C., Hiles, I. D. & Higgins, C. F. ( 1987b; ). Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48, 297–310.[CrossRef]
    [Google Scholar]
  35. Ochsner, U. A., Johnson, Z. & Vasil, M. L. ( 2000; ). Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146, 185–198.
    [Google Scholar]
  36. Olczak, T., Dixon, D. W. & Genco, C. A. ( 2001; ). Binding specificity of the Porphyromonas gingivalis heme and hemoglobin receptor HmuR, gingipain K, and gingipain R1 for heme, porphyrins, and metalloporphyrins. J Bacteriol 183, 5599–5608.[CrossRef]
    [Google Scholar]
  37. Olczak, T., Simpson, W., Liu, X. & Genco, C. A. ( 2005; ). Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol Rev 29, 119–144.[CrossRef]
    [Google Scholar]
  38. Palyada, K., Threadgill, D. & Stintzi, A. ( 2004; ). Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 186, 4714–4729.[CrossRef]
    [Google Scholar]
  39. Panek, H. & O'Brian, M. R. ( 2002; ). A whole genome view of prokaryotic haem biosynthesis. Microbiology 148, 2273–2282.
    [Google Scholar]
  40. Rao, V. K., Krasan, G. P., Hendrixson, D. R., Dawid, S. & St Geme, J. W., III ( 1999; ). Molecular determinants of the pathogenesis of disease due to non-typable Haemophilus influenzae. FEMS Microbiol Rev 23, 99–129.[CrossRef]
    [Google Scholar]
  41. Rishi, P., Woodward, C. L., Kim, W. K. & Ricke, S. C. ( 2004; ). Salmonella enterica serovar Typhimurium hilA-lacZY fusion gene response to iron chelation or supplementation in rich and minimal media. J Environ Sci Health B 39, 861–870.[CrossRef]
    [Google Scholar]
  42. Ronpirin, C., Jerse, A. E. & Cornelissen, C. N. ( 2001; ). Gonococcal genes encoding transferrin-binding proteins A and B are arranged in a bicistronic operon but are subject to differential expression. Infect Immun 69, 6336–6347.[CrossRef]
    [Google Scholar]
  43. Schifferle, R. E., Shostad, S. A., Bayers-Thering, M. T., Dyer, D. W. & Neiders, M. E. ( 1996; ). Effect of protoporphyrin IX limitation on Porphyromonas gingivalis. J Endod 22, 352–355.[CrossRef]
    [Google Scholar]
  44. Sexton, J. A., Pinkner, J. S., Roth, R., Heuser, J. E., Hultgren, S. J. & Vogel, J. P. ( 2004; ). The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J Bacteriol 186, 1658–1666.[CrossRef]
    [Google Scholar]
  45. Simpson, W., Olczak, T. & Genco, C. A. ( 2000; ). Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis. J Bacteriol 182, 5737–5748.[CrossRef]
    [Google Scholar]
  46. Slakeski, N., Dashper, S. G., Cook, P., Poon, C., Moore, C. & Reynolds, E. C. ( 2000; ). A Porphyromonas gingivalis genetic locus encoding a heme transport system. Oral Microbiol Immunol 15, 388–392.[CrossRef]
    [Google Scholar]
  47. Slots, J., Bragd, L., Wikstrom, M. & Dahlen, G. ( 1986; ). The occurrence of Actinobacillus actinomycetemcomitans, Bacteroides gingivalis and Bacteroides intermedius in destructive periodontal disease in adults. J Clin Periodontol 13, 570–577.[CrossRef]
    [Google Scholar]
  48. Stojiljkovic, I. & Hantke, K. ( 1994; ). Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in Yersinia enterocolitica. Mol Microbiol 13, 719–732.[CrossRef]
    [Google Scholar]
  49. Takahashi, N., Sato, T. & Yamada, T. ( 2000; ). Metabolic pathways for cytotoxic end product formation from glutamate- and aspartate-containing peptides by Porphyromonas gingivalis. J Bacteriol 182, 4704–4710.[CrossRef]
    [Google Scholar]
  50. Thompson, J. M., Jones, H. A. & Perry, R. D. ( 1999; ). Molecular characterization of the hemin uptake locus (hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization. Infect Immun 67, 3879–3892.
    [Google Scholar]
  51. Towbin, H., Staehelin, T. & Gordon, J. ( 1992; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnology 24, 145–149.
    [Google Scholar]
  52. Vanderpool, C. K. & Armstrong, S. K. ( 2001; ). The Bordetella bhu locus is required for heme iron utilization. J Bacteriol 183, 4278–4287.[CrossRef]
    [Google Scholar]
  53. Williams, G. D. & Holt, S. C. ( 1985; ). Characteristics of the outer membrane of selected oral Bacteroides species. Can J Microbiol 31, 238–250.[CrossRef]
    [Google Scholar]
  54. Wyckoff, E. E., Duncan, D., Torres, A. G., Mills, M., Maase, K. & Payne, S. M. ( 1998; ). Structure of the Shigella dysenteriae haem transport locus and its phylogenetic distribution in enteric bacteria. Mol Microbiol 28, 1139–1152.[CrossRef]
    [Google Scholar]
  55. Zuker, M. ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29011-0
Loading
/content/journal/micro/10.1099/mic.0.29011-0
Loading

Data & Media loading...

Supplements

Primers. [PDF](21 kb) and transcript levels. [PDF](10 kb) Sequencing data aligned using CLUSTALW. The additional 1 bp (C) present only in the region upstream of reported by Karunakaran (1997) is shown in bold. The source of the genomic templates is indicated on the left. The commonly used laboratory strains were sequenced multiple times, thus they are designated as follows: W83_1, W83_2, and W83_3 for W83 templates, W12_1 and W12_2 for W12, W50_1 and W50_2 for W50, A7436, A7436_1, and 7436_3 for A7436, and ATCC53977_1 for ATCC53977. The 'hmuY genome' sequence was obtained from the sequence data for W83 available at TIGR. [PDF](12 kb) [PDF](21 kb) Isolation and characterization of a hemin-regulated gene, , from . , 1898-1908.

PDF

Primers. [PDF](21 kb) and transcript levels. [PDF](10 kb) Sequencing data aligned using CLUSTALW. The additional 1 bp (C) present only in the region upstream of reported by Karunakaran (1997) is shown in bold. The source of the genomic templates is indicated on the left. The commonly used laboratory strains were sequenced multiple times, thus they are designated as follows: W83_1, W83_2, and W83_3 for W83 templates, W12_1 and W12_2 for W12, W50_1 and W50_2 for W50, A7436, A7436_1, and 7436_3 for A7436, and ATCC53977_1 for ATCC53977. The 'hmuY genome' sequence was obtained from the sequence data for W83 available at TIGR. [PDF](12 kb) [PDF](21 kb) Isolation and characterization of a hemin-regulated gene, , from . , 1898-1908.

PDF

Primers. [PDF](21 kb) and transcript levels. [PDF](10 kb) Sequencing data aligned using CLUSTALW. The additional 1 bp (C) present only in the region upstream of reported by Karunakaran (1997) is shown in bold. The source of the genomic templates is indicated on the left. The commonly used laboratory strains were sequenced multiple times, thus they are designated as follows: W83_1, W83_2, and W83_3 for W83 templates, W12_1 and W12_2 for W12, W50_1 and W50_2 for W50, A7436, A7436_1, and 7436_3 for A7436, and ATCC53977_1 for ATCC53977. The 'hmuY genome' sequence was obtained from the sequence data for W83 available at TIGR. [PDF](12 kb) [PDF](21 kb) Isolation and characterization of a hemin-regulated gene, , from . , 1898-1908.

PDF

Primers. [PDF](21 kb) and transcript levels. [PDF](10 kb) Sequencing data aligned using CLUSTALW. The additional 1 bp (C) present only in the region upstream of reported by Karunakaran (1997) is shown in bold. The source of the genomic templates is indicated on the left. The commonly used laboratory strains were sequenced multiple times, thus they are designated as follows: W83_1, W83_2, and W83_3 for W83 templates, W12_1 and W12_2 for W12, W50_1 and W50_2 for W50, A7436, A7436_1, and 7436_3 for A7436, and ATCC53977_1 for ATCC53977. The 'hmuY genome' sequence was obtained from the sequence data for W83 available at TIGR. [PDF](12 kb) [PDF](21 kb) Isolation and characterization of a hemin-regulated gene, , from . , 1898-1908.

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error