1887

Abstract

Most bacterial strains adhere poorly to poly(ethylene oxide) (PEO)-brush coatings, with the exception of a strain. The aim of this study was to find factors determining whether strains do or do not adhere to a PEO-brush coating in a parallel plate flow chamber. On the basis of their adhesion, a distinction could be made between three adhesive and three non-adhesive strains of , while bacterial motilities and zeta potentials were comparable for all six strains. However, water contact angles indicated that the adhesive strains were much more hydrophobic than the non-adhesive strains. Furthermore, only adhesive strains released surfactive extracellular substances, which may be engaged in attractive interactions with the PEO chains. Atomic force microscopy showed that the adhesion energy, measured from the retract curves of a bacterial-coated cantilever from a brush coating, was significantly more negative for adhesive strains than for non-adhesive strains (<0.001). Through surface thermodynamic and extended-DLVO (Derjaguin, Landau, Verwey, Overbeek) analyses, these stronger adhesion energies could be attributed to acid–base interactions. However, the energies of adhesion of all strains to a brush coating were small when compared with their energies of adhesion to a glass surface. Accordingly, even the adhesive strains could be easily removed from a PEO-brush coating by the passage of a liquid–air interface. In conclusion, cell surface hydrophobicity and surfactant release are the main factors involved in adhesion of strains to PEO-brush coatings.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29005-0
2006-09-01
2020-08-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2673.html?itemId=/content/journal/micro/10.1099/mic.0.29005-0&mimeType=html&fmt=ahah

References

  1. Azeredo J, Visser J, Oliveira R. 1999; Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories. Coll Surf B14:141–148[CrossRef]
    [Google Scholar]
  2. Bos R, Busscher H. J, Van der Mei H. C. 1999; Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol Rev23:179–230
    [Google Scholar]
  3. Cheng P, Neumann A. W. 1992; Computational evaluation of axisymmetric drop shape analysis-profile (ADSA-P). Coll Surf62:297–305[CrossRef]
    [Google Scholar]
  4. Desai N. P, Hossainy S. F. A, Hubbell J. A. 1992; Surface-immobilized poly(ethylene oxide) for bacterial repellance. Biomaterials13:417–420[CrossRef]
    [Google Scholar]
  5. Dufrene Y. F, Vermeiren H, Rouxhet P. G, Van der Leyden J. 1996; Direct evidence for the involvement of extracellular proteins in the adhesion of Azospirillum brasilense . Microbiology142:855–865[CrossRef]
    [Google Scholar]
  6. Dufrene Y. F, Boonaert C. J. P, Busscher H. J, Rouxhet P. G, Van der Mei H. C. 2001; Probing molecular interactions and mechanical properties of microbial cell surfaces by atomic force microscopy. Ultramicroscopy86:113–120[CrossRef]
    [Google Scholar]
  7. Escher A, Characklis W. G. 1990; In Biofilms pp 445–486 Edited by Characklis W. G.. New York: Wiley;
    [Google Scholar]
  8. Furness E. L, Ross A, Davis T. P, King G. C. 1998; A hydrophobic interaction site for lysozyme binding to poly(ethyleneglycol) and model contact lens polymers. Biomaterials19:1361–1369[CrossRef]
    [Google Scholar]
  9. Gomez-Suárez C, Noordmans J, Busscher H. J, Van der Mei H. C. 1999; Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber. Phys Chem1:4423–4427
    [Google Scholar]
  10. Gristina A. G. 1987; Biomaterial-centered infection: microbial adhesion versus tissue integration. Science237:1588–1595[CrossRef]
    [Google Scholar]
  11. Harris J. M. 1992; In Poly(ethyleneglycol) Chemistry: Biotechnical and Biomedical Applications Edited by Harris J. M.. New York: Plenum;
    [Google Scholar]
  12. Hiemenz P. C. 1991; In Principles of Colloid and Surface Chemistry pp 453–487 Edited by Lagowski L. L.. New York & Basel: Marcel Dekker;
    [Google Scholar]
  13. Hogt A. H, Dankert J, Feijen J. 1986; Adhesion of coagulase-negative staphylococci to methacrylate polymers and copolymers. J Biomed Mater Res20:533–545[CrossRef]
    [Google Scholar]
  14. Holland N. B, Qiu Y. X, Ruegsegger M, Marchant R. E. 1998; Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature392:799–801[CrossRef]
    [Google Scholar]
  15. Kaper H. J, Busscher H. J, Norde W. 2003; Characterization of poly(ethylene oxide) brushes on glass surfaces and adhesion of Staphylococcus epidermidis . J Biomater Sci Polym Ed14:313–324[CrossRef]
    [Google Scholar]
  16. Kiers P. J, Bos R, Busscher H. J, Van der Mei H. C. 2001; The electrophoretic softness of the surface of Staphylococcus epidermidis cells grown in a liquid medium and on a solid agar. Microbiology147:757–762
    [Google Scholar]
  17. Kogure K, Ikemoto E, Morisaki H. 1998; Attachment of Vibrio alginolyticus to glass surfaces is dependent on swimming speed. J Bacteriol180:932–937
    [Google Scholar]
  18. Kumar C. G, Anand S. K. 1998; Significance of microbial biofilms in food industry: a review. Int J Food Microbiol42:9–27[CrossRef]
    [Google Scholar]
  19. Lang S. 2002; Biological amphiphiles (microbial biosurfactants). Curr Opin Coll Interface Sci7:12–20[CrossRef]
    [Google Scholar]
  20. Lyklema J. 2005; In Fundamentals of Interface and Colloid Sciencevol. IV San Diego: Academic Press;
    [Google Scholar]
  21. Maas J. H, Cohen Stuart M. A, Sieval A. B, Zuilhof H, Sudholter E. J. R. 2003; Preparation of polystyrene brushes by reaction of terminal vinyl groups on silicon and silica surfaces. Thin Solid Films426:135–139[CrossRef]
    [Google Scholar]
  22. Morisaki H, Nagai S, Ohshima H, Ikemoto E, Kogure K. 1999; The effect of motility and cell-surface polymers on bacterial attachment. Microbiology145:2797–2802
    [Google Scholar]
  23. Nicolella C, Van Loosdrecht M. C. M, Heijnen J. J. 2000; Wastewater treatment with particulate biofilm reactors. J Biotechnol80:1–33[CrossRef]
    [Google Scholar]
  24. Nomura S, Lundberg F, Stollenwerk M, Nakamura K, Ljungh A. 1997; Adhesion of staphylococci to polymers with and without immobilized heparin in cerebrospinal fluid. J Biomed Mater Res38:35–42[CrossRef]
    [Google Scholar]
  25. Norde W. 2003; In Colloid and Interfaces in Life Sciences pp 47–61 Edited by Norde W.. New York: Marcel Dekker;
    [Google Scholar]
  26. Pratt-Terpstra I. H, Weerkamp A. H, Busscher H. J. 1988; On a relation between interfacial free energy-dependent and non-interfacial free energy-dependent adherence of oral streptococci to solid substrata. Curr Microbiol16:311–313[CrossRef]
    [Google Scholar]
  27. Razatos A, Ong Y. L, Boulay F, Elbert D. L, Hubbell J. A, Sharma M. M, Georgiou G. 2000; Force measurements between bacteria and poly(ethylene glycol)-coated surfaces. Langmuir16:9155–9158[CrossRef]
    [Google Scholar]
  28. Roosjen A, Kaper H. J, Norde W, Busscher H. J, Van der Mei H. C. 2003; Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide) brushes on glass in a parallel plate flow chamber. Microbiology149:3239–3246[CrossRef]
    [Google Scholar]
  29. Roosjen A, Busscher H. J, Norde W, Van der Mei H. C. 2004; Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. Langmuir20:10949–10955[CrossRef]
    [Google Scholar]
  30. Ryle A. P. 1965; Behaviour of polyethylene glycol on dialysis and gel-filtration. Nature206:1256
    [Google Scholar]
  31. Sauer K, Camper A. K, Ehrlich G. D, Costerton J. W, Davies D. G. 2002; Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol184:1140–1154[CrossRef]
    [Google Scholar]
  32. Sheth S. R, Efremova N, Leckband D. E. 2000; Interactions of poly(ethylene oxide) brushes with chemically selective surfaces. J Phys Chem B104:7652–7662[CrossRef]
    [Google Scholar]
  33. Szewzyk U, Szewzyk R, Manz W, Schleifer K. H. 2000; Microbiological safety of drinking water. Annu Rev Microbiol54:81–127[CrossRef]
    [Google Scholar]
  34. Vadillo-Rodriguez V, Busscher H. J, Norde W, De Vries J, Van der Mei H. C. 2003; On relations between microscopic and macroscopic physicochemical properties of bacterial cell surfaces: an AFM study on Streptococcus mitis strains. Langmuir19:2372–2377[CrossRef]
    [Google Scholar]
  35. Van der Mei H. C, Bos R, Busscher H. J. 1998; A reference guide to microbial cell surface hydrophobicity based on contact angles. Coll Surf B11:213–221[CrossRef]
    [Google Scholar]
  36. Van Hoogmoed C. G, Kuijl-Booij M, Busscher H. J, Van der Mei H. C. 2000; Inhibition of Streptococcus mutans NS adhesion to glass with and without a salivary conditioning film by biosurfactant-releasing Streptococcus mitis strains. Appl Environ Microbiol66:659–663[CrossRef]
    [Google Scholar]
  37. Van Krevelen D. W. 1976; In Properties of Polymers Amsterdam: Elsevier;
    [Google Scholar]
  38. Van Loosdrecht M. C. M, Lyklema J, Norde W, Schraa G, Zehnder A. J. B. 1987; Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol53:1898–1901
    [Google Scholar]
  39. Van Oss C. J. 1994; In Interfacial Forces in Aqueous Media Edited by Oss C. J. Van. New York: Marcel Dekker;
    [Google Scholar]
  40. Van Oss C. J, Good R. J, Chaudhury M. K. 1986; The role of Van der Waals forces and hydrogen bonds in hydrophobic interactions between biopolymers and low energy surfaces. J Coll Interf Sci111:378–390[CrossRef]
    [Google Scholar]
  41. Van Wagenen R. A, Andrade J. D. 1980; Flat plate streaming potential investigations: hydrodynamics and electrokinetic equivalency. J Coll Interf Sci76:305–314[CrossRef]
    [Google Scholar]
  42. Wei J, Ravn D. B, Gram L, Kingshott P. 2003; Stainless steel modified with poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion. Coll Surf B32:275–291[CrossRef]
    [Google Scholar]
  43. Yebra D. M, Kiil S, Dam-Johansen K. 2004; Antifouling technology – past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat50:75–104[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29005-0
Loading
/content/journal/micro/10.1099/mic.0.29005-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error