monitoring of the potassium channel KcsA in hyphae using immuno-electron microscopy and energy-filtering transmission electron microscopy Free

Abstract

The previous discovery of the gene and its overexpression followed by the functional reconstitution of the purified gene product has resulted in new strategies to explore this channel protein . KcsA has evolved as a general model to investigate the structure/function relationship of ion channel proteins. Using specific antibodies raised against a domain of KcsA lacking membrane-spanning regions, KcsA has now been localized within numerous separated clusters between the outer face of the cytoplasm and the cell envelope in substrate hyphae of the wild-type strain but not in a designed chromosomal disruption mutant ΔK, lacking a functional gene. Previous findings had revealed that caesium ions led to a block of KcsA channel activity within protoplasts fused to giant vesicles. As caesium can be scored by electron energy loss spectroscopy better than potassium, this technique was applied to hyphae that had been briefly exposed to caesium instead of potassium ions. Caesium was found preferentially at the cell envelope. Compared to the ΔK mutant, the relative level of caesium was ≈30 % enhanced in the wild-type. This is attributed to the presence of KcsA channels. Additional visualization by electron spectroscopic imaging supported this conclusion. The data presented are believed to represent the first demonstration of monitoring of KcsA in its original host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29002-0
2006-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2831.html?itemId=/content/journal/micro/10.1099/mic.0.29002-0&mimeType=html&fmt=ahah

References

  1. Ahn C. C, Krivanek O. L. 1983 A reference guide of electron energy loss spectra covering all stable elements Warrendale, PA: Gatan;
    [Google Scholar]
  2. Bleher R, Machado J. 2004; Paracellular pathways in the shell epithelium of Anodonta cygnea . J Exp Zool 301:419–427
    [Google Scholar]
  3. Blondelet-Rouault M. H, Weiser J, Lebrihi A, Branny P, Pernodet J. L. 1997; Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces . Gene 190:315–317 [CrossRef]
    [Google Scholar]
  4. Bohrmann J, Heinrich U. R. 1994; Localization of potassium pumps in Drosophila ovarian follicles. Zygote 2:189–199
    [Google Scholar]
  5. Bölter B, Soll J, Schulz A, Hinnah S, Wagner R. 1998; Origin of a chloroplast protein importer. Proc Natl Acad Sci U S A95:15831–15836
    [Google Scholar]
  6. Bucking H, Beckmann S, Heyser W, Kottke I. 1998; Elemental contents in vacuolar granules of extomycorrhizal fungi measured by EELS and EDXS. A comparison of different methods and preparation techniques. Micron 29:53–61 [CrossRef]
    [Google Scholar]
  7. Chavez F, Jerez C. A, Lünsdorf H. 2004; Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chlorobiphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate. Appl Environ Microbiol 70:3064–3072 [CrossRef]
    [Google Scholar]
  8. Cruz A. F. 2004; Element storage in spores of Gigaspora margarita Becker & Hall measured by electron energy loss spectroscopy (EELS). Acta Bot Bras 18:473–480 [CrossRef]
    [Google Scholar]
  9. Derst C, Karschin A. 1998; Evolutionary link between prokaryotic and eukaryotic K[sup]+[/sup] channels. J Exp Biol 201:2791–2799
    [Google Scholar]
  10. Doyle D. A. 2004; Structural themes in ion channels. Eur Biophys J 33:175–179
    [Google Scholar]
  11. Doyle D. A, Cabral J. M, Pfuetzner R. A, Kuo A, Gulbis J. M, Cohen S. L, Chait B. T, MacKinnon R. 1998; The structure of the potassium channel: molecular basis of K[sup]+[/sup] conduction and selectivity. Science 280:69–77 [CrossRef]
    [Google Scholar]
  12. Durell S. R, Guy H. R. 2001; A family of putative Kir potassium channels in prokaryotes. BMC Evol Biol 1:14 [CrossRef]
    [Google Scholar]
  13. Durell S. R, Hao Y, Nakamura T, Bakker E. P, Guy H. R. 1999; Evolutionary relationship between K[sup]+[/sup] channels and symporters. Biophys J 77:775–788 [CrossRef]
    [Google Scholar]
  14. Goping G, Pollard H. B, Srivastava M, Leapman R. 2003; Mapping protein expression in mouse pancreatic islets by immunolabeling and electron energy loss spectrum-imaging. Microsc Res Tech 61:448–456 [CrossRef]
    [Google Scholar]
  15. Heinrich U. R, Maurer J, Mann W. 1998; Possible Ca[sup]2+[/sup]-dependent mechanism of apical outer hair cell modulation within the cochlea of the guinea pig. Cell Tissue Res 292:57–65 [CrossRef]
    [Google Scholar]
  16. Hofer F, Grogger W, Kothleitner G, Warbichler P. 1999; Quantitative compositional imaging with energy-filtering TEM. In EMAG'99, 25–27 August 1999 Sheffield, UK: http://www.felmi-zfe.tugraz.at/download/EMAG99final.pdf
    [Google Scholar]
  17. Hopwood D. A, Bibb M. J, Chater K. F. 7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  18. Kharkovets T, Hardelin J. P, Safieddine S, Schweizer M, El Amraoui A, Petit C, Jentsch T. J. 2000; KCNQ4, a K[sup]+[/sup] channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci U S A 97:4333–4338 [CrossRef]
    [Google Scholar]
  19. Kottke I. 1991; Electron energy loss spectroscopy and imaging technique for subcellular localization of elements in mycorrhiza. Methods Microbiol 23:369–382
    [Google Scholar]
  20. Kutzner H. J. 1981; The family Streptomycetaceae. In The Prokaryotes: a Handbook on Habitats, Isolation and Identification of Bacteria pp  2028–2090 Edited by Starr M. P., Stolp H., Schlegel H., Trüper H. G., Balows A. Berlin: Springer;
    [Google Scholar]
  21. Liu D, Kottke I. 2003; Subcellular localization of chromium and nickel in root cells of Allium cepa by EELS and ESI. Cell Biol Toxicol 19:299–311 [CrossRef]
    [Google Scholar]
  22. Meuser D, Splitt H, Wagner R, Schrempf H. 1999; Exploring the open pore of the K[sup]+[/sup] channel KcsA from Streptomyces lividans . FEBS Lett 462:447–452 [CrossRef]
    [Google Scholar]
  23. Meuser D, Splitt H, Wagner R, Schrempf H. 2001; Mutations stabilizing an open conformation within the external region of the permeation pathway of the potassium channel KcsA. Eur Biophys J 30:385–391 [CrossRef]
    [Google Scholar]
  24. Molina M. L, Barrera F. N, Fernandez A. M, Poveda J. A, Renart M. L, Encinar J. A, Riquelme G, Gonzalez-Ros J. M. 2006; Clustering and coupled gating modulate the activity in KcsA, a potassium channel model. J Biol Chem http://www.jbc.org/cgi/doi/10.1074/jbc.M600342200
    [Google Scholar]
  25. Muth G, Farr M, Hartmann V, Wohlleben W. 1995; Streptomyces ghanaensis plasmid pSG5: nucleotide sequence analysis of the self-transmissible minimal replicon and characterization of the replication mode. Plasmid 33:113–126 [CrossRef]
    [Google Scholar]
  26. Olsen M. L, Schade S, Lyons S. A, Amaral M. D, Sontheimer H. 2003; Expression of voltage-gated chloride channels in human glioma cells. J Neurosci 23:5572–5582
    [Google Scholar]
  27. Rasmussen H. B, Moller M, Knaus H. G, Jensen B. S, Olesen S. P, Jorgensen N. K. 2004; Subcellular localization of the delayed rectifier K[sup]+[/sup] channels KCNQ1 and ERG1 in the rat heart. Am J Physiol Heart Circ Physiol 286:H1300–H1309
    [Google Scholar]
  28. Reusch R. N. 1999; Streptomyces lividans potassium channel contains poly-(R)-3-hydroxybutyrate and inorganic polyphosphate. Biochemistry 38:15666–15672 [CrossRef]
    [Google Scholar]
  29. Reusch R. N. 2000; Transmembrane ion transport by polyphosphate/poly-(R)-3-hydroxybutyrate complexes. Biochemistry (Mosc) 65:280–295
    [Google Scholar]
  30. Rocchetta H. L, Lam J. S. 1997; Identification and functional characterization of an ABC transport system involved in polysaccharide export of A-band lipopolysaccharide in Pseudomonas aeruginosa . J Bacteriol 179:4713–4724
    [Google Scholar]
  31. Roth J, Bendayan M, Carlemalm E, Villiger W, Garavito M. 1981; Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem 29:663–671 [CrossRef]
    [Google Scholar]
  32. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Schlochtermeier A, Niemeyer F, Schrempf H. 1992; Biochemical and electron microscopic studies of the Streptomyces reticuli cellulase (Avicelase) in its mycelium-associated and extracellular forms. Appl Environ Microbiol 58:3240–3248
    [Google Scholar]
  34. Schrempf H. 1999; Investigations of streptomycetes using tools of recombinant DNA technology. In Manual of Industrial Microbiology and Biotechnology, 2nd edn. pp  501–510 Edited by Demain A. L., Davies J. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Schrempf H. 2005; Deciphering the Streptomyces lividans KcsA as a channel model. In Bacterial Ion Channels and Their Eukaryotic Homologs pp  14–67 Edited by Kubalski A., Martinac B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Schrempf H, Schmidt O, Hinnah S, Betzler M, Steinkamp T, Wagner R, Kümmerlen R, Müller D. 1995; A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans . EMBO J 14:5170–5178
    [Google Scholar]
  37. Somlyo A. P, Shuman H. 1982; Electron probe and electron energy loss analysis in biology. Ultramicroscopy 8:219–233 [CrossRef]
    [Google Scholar]
  38. Splitt H, Meuser D, Borovok I, Betzler M, Schrempf H. 2000; Pore mutations affecting tetrameric assembly and functioning of the potassium channel KcsA from Streptomyces lividans . FEBS Lett 472:83–87 [CrossRef]
    [Google Scholar]
  39. van Dalen A, Schrempf H, Killian J. A, de Kruijff B. 2000; Efficient membrane assembly of the KcsA potassium channel in Escherichia coli requires the protonmotive force. EMBO Rep 1:340–346 [CrossRef]
    [Google Scholar]
  40. Xiao X, Wang F, Saito A, Majka J, Schrempf H, Schlösser A. 2002; The novel Streptomyces olivaceoviridis ABC transporter Ngc mediates uptake of N -acetylglucosamine and N , N ′-diacetylchitobiose. Mol Genet Genomics 267:429–439 [CrossRef]
    [Google Scholar]
  41. Zakharian E, Reusch R. N. 2004; Functional evidence for a supramolecular structure for the Streptomyces lividans potassium channel KcsA. Biochem Biophys Res Commun 322:1059–1065 [CrossRef]
    [Google Scholar]
  42. Zhu Y. G, Smolders E. 2000; Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J Exp Bot 51:1635–1645 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29002-0
Loading
/content/journal/micro/10.1099/mic.0.29002-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed