1887

Abstract

regulates gene expression in response to environmental conditions, including temperature, pH, redox potential and host factors. encodes a PerR homologue designated BosR, which presumably serves as a global regulator of genes involved in the oxidative stress response. Infectious strain B31 is resistant to oxidative stressors , whereas the non-infectious isolate was sensitive due, in part, to a point mutation that converts an arginine to a lysine at residue 39 of BosR. Subsequent insertional inactivation of this allele ( : : kan) restored resistance to oxidative stressors. These observations suggest that the non-infectious  : : kan strain may transcribe genes that are also expressed in infectious cells, but are repressed in the background, thus explaining the different oxidative stress phenotypes observed between these isolates. To test this hypothesis, macroarray technology and quantitative RT-PCR were utilized to compare the transcriptional profiles from the isogenic and  : : kan isolates. Array data indicated that 88 ORFs were significantly expressed in the absence of BosRR39K. Since most affected genes mapped to the chromosome, it is likely that these genes define an important physiologic response for . Included within the genes identified was the detoxification gene , as well as other loci not overtly linked to oxidative stress. These results suggest that a putative BosR regulon, as defined by the allele, is required to combat toxic oxidative intermediates, but may also be involved in adaptive strategies that are independent of reactive oxygen species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28996-0
2006-09-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2599.html?itemId=/content/journal/micro/10.1099/mic.0.28996-0&mimeType=html&fmt=ahah

References

  1. Akins D. R, Bourell K. W, Caimano M. J, Norgard M. V, Radolf J. D. 1998; A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. J Clin Invest 101:2240–2250 [CrossRef]
    [Google Scholar]
  2. Anderton J. M, Tokarz R, Thill C. D, Kuhlow C. J, Brooks C. S, Akins D. R, Katona L. I, Benach J. L. 2004; Whole-genome DNA array analysis of the response of Borrelia burgdorferi to a bactericidal monoclonal antibody. Infect Immun 72:2035–2044 [CrossRef]
    [Google Scholar]
  3. Aslund F, Zheng M, Beckwith J, Storz G. 1999; Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci U S A 96:6161–6165 [CrossRef]
    [Google Scholar]
  4. Boylan J. A, Posey J. E, Gherardini F. C. 2003; Borrelia oxidative stress response regulator, BosR: a distinctive Zn-dependent transcriptional activator. Proc Natl Acad Sci U S A 100:11684–11689 [CrossRef]
    [Google Scholar]
  5. Boylan J. A, Hummel C. S, Benoit S, Garcia-Lara J, Treglown-Downey J, Crane E. J., 3rd, Gherardini F. C. 2006; Borrelia burgdorferi bb0728 encodes a coenzyme A disulphide reductase whose function suggests a role in intracellular redox and the oxidative stress response. Mol Microbiol 59:475–486 [CrossRef]
    [Google Scholar]
  6. Brooks C. S, Hefty P. S, Jolliff S. E, Akins D. R. 2003; Global analysis of Borrelia burgdorferi genes regulated by mammalian host-specific signals. Infect Immun 71:3371–3383 [CrossRef]
    [Google Scholar]
  7. Bsat N, Herbig A, Casillas-Martinez L, Setlow P, Helmann J. D. 1998; Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–198 [CrossRef]
    [Google Scholar]
  8. Carroll J. A, Garon C. F, Schwan T. G. 1999; Effects of environmental pH on membrane proteins in Borrelia burgdorferi . Infect Immun 67:3181–3187
    [Google Scholar]
  9. Carroll J. A, Cordova R. M, Garon C. F. 2000; Identification of 11 pH-regulated genes in Borrelia burgdorferi localizing to linear plasmids. Infect Immun 68:6677–6684 [CrossRef]
    [Google Scholar]
  10. Chou J. H, Greenberg J. T, Demple B. 1993; Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J Bacteriol 175:1026–1031
    [Google Scholar]
  11. Coburn J, Cugini C. 2003; Targeted mutation of the outer membrane protein P66 disrupts attachment of the Lyme disease agent, Borrelia burgdorferi , to integrin alphavbeta3. Proc Natl Acad Sci U S A 100:7301–7306 [CrossRef]
    [Google Scholar]
  12. Conway T, Kraus B, Tucker D. L, Smalley D. J, Dorman A. F, McKibben L. 2002; DNA array analysis in a Microsoft Windows environment. Biotechniques 32: 110, 112–114, 116, 118–119
    [Google Scholar]
  13. Fraser C. M, Casjens S, Huang W. M. 35 other authors 1997; Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi . Nature 390:580–586 [CrossRef]
    [Google Scholar]
  14. Fuangthong M, Herbig A. F, Bsat N, Helmann J. D. 2002; Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J Bacteriol 184:3276–3286 [CrossRef]
    [Google Scholar]
  15. Helmann J. D, Wu M. F, Gaballa A, Kobel P. A, Morshedi M. M, Fawcett P, Paddon C. 2003; The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol 185:243–253 [CrossRef]
    [Google Scholar]
  16. Herbig A. F, Helmann J. D. 2001; Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 41:849–859
    [Google Scholar]
  17. Horsburgh M. J, Clements M. O, Crossley H, Ingham E, Foster S. J. 2001a; PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus . Infect Immun 69:3744–3754 [CrossRef]
    [Google Scholar]
  18. Horsburgh M. J, Ingham E, Foster S. J. 2001b; In Staphylococcus aureus , fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol 183:468–475 [CrossRef]
    [Google Scholar]
  19. Hubner A, Yang X, Nolen D. M, Popova T. G, Cabello F. C, Norgard M. V. 2001; Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 98:12724–12729 [CrossRef]
    [Google Scholar]
  20. Katona L. I, Tokarz R, Kuhlow C. J, Benach J, Benach J. L. 2004; The fur homologue in Borrelia burgdorferi . J Bacteriol 186:6443–6456 [CrossRef]
    [Google Scholar]
  21. Labandeira-Rey M, Skare J. T. 2001; Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect Immun 69:446–455 [CrossRef]
    [Google Scholar]
  22. Mongkolsuk S, Helmann J. D. 2002; Regulation of inducible peroxide stress responses. Mol Microbiol 45:9–15 [CrossRef]
    [Google Scholar]
  23. Nichols T. L, Whitehouse C. A, Austin F. E. 2000; Transcriptional analysis of a superoxide dismutase gene of Borrelia burgdorferi . FEMS Microbiol Lett 183:37–42 [CrossRef]
    [Google Scholar]
  24. Ojaimi C, Brooks C, Casjens S. 12 other authors 2003; Profiling of temperature-induced changes in Borrelia burgdorferi gene expression by using whole genome arrays. Infect Immun 71:1689–1705 [CrossRef]
    [Google Scholar]
  25. Purser J. E, Norris S. J. 2000; Correlation between plasmid content and infectivity in Borrelia burgdorferi . Proc Natl Acad Sci U S A 97:13865–13870 [CrossRef]
    [Google Scholar]
  26. Revel A. T, Talaat A. M, Norgard M. V. 2002; DNA microarray analysis of differential gene expression in Borrelia burgdorferi , the Lyme disease spirochete. Proc Natl Acad Sci U S A 99:1562–1567 [CrossRef]
    [Google Scholar]
  27. Schwan T. G, Piesman J, Golde W. T, Dolan M. C, Rosa P. A. 1995; Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A 92:2909–2913 [CrossRef]
    [Google Scholar]
  28. Schwan T. G, Battisti J. M, Porcella S. F. 7 other authors 2003; Glycerol-3-phosphate acquisition in spirochetes: distribution and biological activity of glycerophosphodiester phosphodiesterase (GlpQ) among Borrelia species. J Bacteriol 185:1346–1356 [CrossRef]
    [Google Scholar]
  29. Seshu J, Boylan J. A, Gherardini F. C, Skare J. T. 2004a; Dissolved oxygen levels alter gene expression and antigen profiles in Borrelia burgdorferi . Infect Immun 72:1580–1586 [CrossRef]
    [Google Scholar]
  30. Seshu J, Boylan J. A, Hyde J. A, Swingle K. L, Gherardini F. C, Skare J. T. 2004b; A conservative amino acid change alters the function of BosR, the redox regulator of Borrelia burgdorferi . Mol Microbiol 54:1352–1363 [CrossRef]
    [Google Scholar]
  31. Siegemund M, Ince C, van Bommel J. 1999; Assessment of regional tissue oxygenation. Intensive Care Med 25:1044–1060 [CrossRef]
    [Google Scholar]
  32. Skare J. T, Mirzabekov T. A, Shang E. S. 8 other authors 1997; The Oms66 (p66) protein is a Borrelia burgdorferi porin. Infect Immun 65:3654–3661
    [Google Scholar]
  33. Steere A. C, Coburn J, Glickstein L. 2004; The emergence of Lyme disease. J Clin Invest 113:1093–1101 [CrossRef]
    [Google Scholar]
  34. Storz G, Imlay J. A. 1999; Oxidative stress. Curr Opin Microbiol 2:188–194 [CrossRef]
    [Google Scholar]
  35. Tokarz R, Anderton J. M, Katona L. I, Benach J. L. 2004; Combined effects of blood and temperature shift on Borrelia burgdorferi gene expression as determined by whole genome DNA array. Infect Immun 72:5419–5432 [CrossRef]
    [Google Scholar]
  36. Venkatesh B, Morgan T. J, Lipman J. 2000; Subcutaneous oxygen tensions provide similar information to ileal luminal CO[sub]2[/sub] tensions in an animal model of haemorrhagic shock. Intensive Care Med 26:592–600 [CrossRef]
    [Google Scholar]
  37. Whitehouse C. A, Williams L. R, Austin F. E. 1997; Identification of superoxide dismutase activity in Borrelia burgdorferi . Infect Immun 65:4865–4868
    [Google Scholar]
  38. Yang X, Goldberg M. S, Popova T. G, Schoeler G. B, Wikel S. K, Hagman K. E, Norgard M. V. 2000; Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi . Mol Microbiol 37:1470–1479 [CrossRef]
    [Google Scholar]
  39. Yang X. F, Alani S. M, Norgard M. V. 2003; The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi . Proc Natl Acad Sci U S A 100:11001–11006 [CrossRef]
    [Google Scholar]
  40. Zheng M, Aslund F, Storz G. 1998; Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–1721 [CrossRef]
    [Google Scholar]
  41. Zheng M, Wang X, Doan B, Lewis K. A, Schneider T. D, Storz G. 2001; Computation-directed identification of OxyR DNA binding sites in Escherichia coli . J Bacteriol 183:4571–4579 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28996-0
Loading
/content/journal/micro/10.1099/mic.0.28996-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error