1887

Abstract

serovar Typhimurium is a facultative intracellular pathogen causing disease in several hosts. These bacteria use two distinct type III secretion systems that inject effector proteins into the host cell for invasion and to alter maturation of the -containing vacuole. Members of the translocated effector (STE) family contain a conserved N-terminal translocation signal of approximately 140 aa. In this study, the STE family member SifA was examined using deletion strategies. Small deletions (approx. 20 residues long) throughout SifA were sufficient to block its secretion and/or translocation into host cells. Transfection of HeLa cells with a GFP-SifA fusion was previously shown to be sufficient to induce formation of Sif-like tubules resembling structures present in -infected cells. The present study showed that both N- and C-terminal domains of SifA are required for this phenotype. Furthermore, both domains could induce aggregation of Lamp1-positive compartments, provided they were coupled to the minimal C-terminal membrane-anchoring motif of SifA. Mutation or deletion of the conserved STE N-terminal WEK(I/M)xxFF translocation motif of SopD2 disrupted its association with Lamp1-positive compartments, implicating these residues in both effector translocation and subcellular localization. Interestingly, one GFP-SifA deletion mutant lacking residues 42–101, but retaining the WEK(I/M)xxFF motif, targeted the Golgi apparatus. In addition, short peptides containing the signature WEK(I/M)xxFF motif derived from the N-termini of effectors SopD2, SseJ and SspH2 were sufficient to localize GFP to the Golgi. These studies suggest that effectors contain multifunctional motifs or domains that regulate several effector traits, including protein secretion/translocation, localization and subversion of host cell systems. Conditions that perturb the tertiary structure of effectors can influence their localization in host cells by liberating cryptic intracellular targeting motifs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28995-0
2006-08-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2323.html?itemId=/content/journal/micro/10.1099/mic.0.28995-0&mimeType=html&fmt=ahah

References

  1. Allen-Vercoe, E., Toh, M. C., Waddell, B., Ho, H. & DeVinney, R. ( 2005; ). A carboxy-terminal domain of Tir from enterohemorrhagic Escherichia coli O157 : H7 (EHEC O157 : H7) required for efficient type III secretion. FEMS Microbiol Lett 243, 355–364.[CrossRef]
    [Google Scholar]
  2. Anderson, D. M. & Schneewind, O. ( 1997; ). A mRNA signal for the Type III secretion of Yop proteins by Yersinia enterocolitica. Science 278, 1140–1143.[CrossRef]
    [Google Scholar]
  3. Andersson, A. M. & Pettersson, R. F. ( 1998; ). Targeting of a short peptide derived from the cytoplasmic tail of the G1 membrane glycoprotein of Uukuniemi virus (Bunyaviridae) to the Golgi complex. J Virol 72, 9585–9596.
    [Google Scholar]
  4. Baillie, G. S., Huston, E., Scotland, G. & other authors ( 2002; ). TAPAS-1, a novel microdomain within the unique N-terminal region of the PDE4A1 cAMP-specific phosphodiesterase that allows rapid, Ca2+-triggered membrane association with selectivity for interaction with phosphatidic acid. J Biol Chem 277, 28298–28309.[CrossRef]
    [Google Scholar]
  5. Bakshi, C. S., Singh, V. P., Wood, M. W., Jones, P. W., Wallis, T. S. & Galyov, E. E. ( 2000; ). Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J Bacteriol 182, 2341–2344.[CrossRef]
    [Google Scholar]
  6. Beuzon, C. R., Banks, G., Deiwick, J., Hensel, M. & Holden, D. W. ( 1999; ). pH-dependent secretion of SseB, a product of the SPI-2 type III secretion system of Salmonella typhimurium. Mol Microbiol 33, 806–816.[CrossRef]
    [Google Scholar]
  7. Beuzon, C. R., Meresse, S., Unsworth, K. E., Ruiz-Albert, J., Garvis, S., Waterman, S. R., Ryder, T. A., Boucrot, E. & Holden, D. W. ( 2000; ). Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 19, 3235–3249.[CrossRef]
    [Google Scholar]
  8. Beuzon, C. R., Salcedo, S. P. & Holden, D. W. ( 2002; ). Growth and killing of a Salmonella enterica serovar Typhimurium sifA mutant strain in the cytosol of different host cell lines. Microbiology 148, 2705–2715.
    [Google Scholar]
  9. Birmingham, C. L., Jiang, X., Ohlson, M. B., Miller, S. I. & Brumell, J. H. ( 2005; ). Salmonella-induced filament formation is a dynamic phenotype induced by rapidly replicating Salmonella enterica serovar typhimurium in epithelial cells. Infect Immun 73, 1204–1208.[CrossRef]
    [Google Scholar]
  10. Boucrot, E., Beuzon, C. R., Holden, D. W., Gorvel, J. P. & Meresse, S. ( 2003; ). Salmonella typhimurium SifA effector protein requires its membrane-anchoring C-terminal hexapeptide for its biological function. J Biol Chem 278, 14196–14202.[CrossRef]
    [Google Scholar]
  11. Boucrot, E., Henry, T., Borg, J. P., Gorvel, J. P. & Meresse, S. ( 2005; ). The intracellular fate of Salmonella depends on the recruitment of kinesin. Science 308, 1174–1178.[CrossRef]
    [Google Scholar]
  12. Brumell, J. H. & Grinstein, S. ( 2004; ). Salmonella redirects phagosomal maturation. Curr Opin Microbiol 7, 78–84.[CrossRef]
    [Google Scholar]
  13. Brumell, J. H., Marcus, S. L. & Finlay, B. B. ( 2000; ). N-terminal conservation of putative type III secreted effectors of Salmonella typhimurium. Mol Microbiol 36, 773–774.
    [Google Scholar]
  14. Brumell, J. H., Rosenberger, C. M., Gotto, G. T., Marcus, S. L. & Finlay, B. B. ( 2001a; ). SifA permits survival and replication of Salmonella typhimurium in murine macrophages. Cell Microbiol 3, 75–84.[CrossRef]
    [Google Scholar]
  15. Brumell, J. H., Tang, P., Mills, S. D. & Finlay, B. B. ( 2001b; ). Characterization of Salmonella-induced filaments (Sifs) reveals a delayed interaction between salmonella-containing vacuoles and late endocytic compartments. Traffic 2, 643–653.[CrossRef]
    [Google Scholar]
  16. Brumell, J. H., Goosney, D. L. & Finlay, B. B. ( 2002; ). SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic 3, 407–415.[CrossRef]
    [Google Scholar]
  17. Brumell, J. H., Kujat-Choy, S., Brown, N. F., Vallance, B. A., Knodler, L. A. & Finlay, B. B. ( 2003; ). SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells. Traffic 4, 36–48.[CrossRef]
    [Google Scholar]
  18. Chakravortty, D., Hansen-Wester, I. & Hensel, M. ( 2002; ). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195, 1155–1166.[CrossRef]
    [Google Scholar]
  19. Chang, J., Chen, J. & Zhou, D. ( 2005; ). Delineation and characterization of the actin nucleation and effector translocation activities of Salmonella SipC. Mol Microbiol 55, 1379–1389.
    [Google Scholar]
  20. Cirillo, D. M., Valdivia, R. H., Monack, D. M. & Falkow, S. ( 1998; ). Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol 30, 175–188.[CrossRef]
    [Google Scholar]
  21. Cook, N. R., Row, P. E. & Davidson, H. W. ( 2004; ). Lysosome associated membrane protein 1 (Lamp1) traffics directly from the TGN to early endosomes. Traffic 5, 685–699.[CrossRef]
    [Google Scholar]
  22. Coombes, B. K., Brown, N. F., Kujat-Choy, S., Vallance, B. A. & Finlay, B. B. ( 2003; ). SseA is required for translocation of Salmonella pathogenicity island-2 effectors into host cells. Microbes Infect 5, 561–570.[CrossRef]
    [Google Scholar]
  23. Coombes, B. K., Brown, N. F., Valdez, Y., Brumell, J. H. & Finlay, B. B. ( 2004; ). Expression and secretion of Salmonella pathogenicity island-2 virulence genes in response to acidification exhibit differential requirements of a functional type III secretion apparatus and SsaL. J Biol Chem 279, 49804–49815.[CrossRef]
    [Google Scholar]
  24. Cornelis, G. R. & Van Gijsegem, F. ( 2000; ). Assembly and function of type III secretory systems. Annu Rev Microbiol 54, 735–774.[CrossRef]
    [Google Scholar]
  25. Dunlap, N. E., Benjamin, W. H., Jr, McCall, R. D., Jr, Tilden, A. B. & Briles, D. E. ( 1991; ). A ‘safe-site’ for Salmonella typhimurium is within splenic cells during the early phase of infection in mice. Microb Pathog 10, 297–310.[CrossRef]
    [Google Scholar]
  26. Freyberg, Z., Sweeney, D., Siddhanta, A., Bourgoin, S., Frohman, M. & Shields, D. ( 2001; ). Intracellular localization of phospholipase D1 in mammalian cells. Mol Biol Cell 12, 943–955.[CrossRef]
    [Google Scholar]
  27. Freyberg, Z., Siddhanta, A. & Shields, D. ( 2003; ). “Slip, sliding away”: phospholipase D and the Golgi apparatus. Trends Cell Biol 13, 540–546.[CrossRef]
    [Google Scholar]
  28. Friebel, A., Ilchmann, H., Aepfelbacher, M., Ehrbar, K., Machleidt, W. & Hardt, W. D. ( 2001; ). SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J Biol Chem 276, 34035–34040.[CrossRef]
    [Google Scholar]
  29. Galan, J. E. ( 2001; ). Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17, 53–86.[CrossRef]
    [Google Scholar]
  30. Galan, J. E. & Fu, Y. ( 2000; ). Modulation of actin cytoskeleton by Salmonella GTPase activating protein SptP. Methods Enzymol 325, 496–504.
    [Google Scholar]
  31. Galan, J. E. & Zhou, D. ( 2000; ). Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc Natl Acad Sci U S A 97, 8754–8761.[CrossRef]
    [Google Scholar]
  32. Gallois, A., Klein, J. R., Allen, L. A., Jones, B. D. & Nauseef, W. M. ( 2001; ). Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J Immunol 166, 5741–5748.[CrossRef]
    [Google Scholar]
  33. Garcia-del Portillo, F., Zwick, M. B., Leung, K. Y. & Finlay, B. B. ( 1993; ). Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc Natl Acad Sci U S A 90, 10544–10548.[CrossRef]
    [Google Scholar]
  34. Gauthier, A., de Grado, M. & Finlay, B. B. ( 2000; ). Mechanical fractionation reveals structural requirements for enteropathogenic Escherichia coli Tir insertion into host membranes. Infect Immun 68, 4344–4348.[CrossRef]
    [Google Scholar]
  35. Ghosh, P. ( 2004; ). Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev 68, 771–795.[CrossRef]
    [Google Scholar]
  36. Guignot, J., Caron, E., Beuzon, C., Bucci, C., Kagan, J., Roy, C. & Holden, D. W. ( 2004; ). Microtubule motors control membrane dynamics of Salmonella-containing vacuoles. J Cell Sci 117, 1033–1045.[CrossRef]
    [Google Scholar]
  37. Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. & Galan, J. E. ( 1998; ). S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826.[CrossRef]
    [Google Scholar]
  38. Harrington, A. T., Hearn, P. D., Picking, W. L., Barker, J. R., Wessel, A. & Picking, W. D. ( 2003; ). Structural characterization of the N terminus of IpaC from Shigella flexneri. Infect Immun 71, 1255–1264.[CrossRef]
    [Google Scholar]
  39. Harrison, R. E., Brumell, J. H., Khandani, A., Bucci, C., Scott, C. C., Jiang, X., Finlay, B. B. & Grinstein, S. ( 2004; ). Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles. Mol Biol Cell 15, 3146–3154.[CrossRef]
    [Google Scholar]
  40. Hensel, M., Shea, J. E., Waterman, S. R. & other authors ( 1998; ). Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 30, 163–174.[CrossRef]
    [Google Scholar]
  41. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. & Pease, L. R. ( 1989; ). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.[CrossRef]
    [Google Scholar]
  42. Hoiseth, S. K. & Stocker, B. A. ( 1981; ). Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291, 238–239.[CrossRef]
    [Google Scholar]
  43. Hueck, C. J. ( 1998; ). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62, 379–433.
    [Google Scholar]
  44. Jiang, X., Rossanese, O. W., Brown, N. F., Kujat-Choy, S., Galan, J. E., Finlay, B. B. & Brumell, J. H. ( 2004; ). The related effector proteins SopD and SopD2 from Salmonella enterica serovar Typhimurium contribute to virulence during systemic infection of mice. Mol Microbiol 54, 1186–1198.[CrossRef]
    [Google Scholar]
  45. Jones, B. D., Ghori, N. & Falkow, S. ( 1994; ). Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 180, 15–23.[CrossRef]
    [Google Scholar]
  46. Knodler, L. A. & Steele-Mortimer, O. ( 2003; ). Taking possession: biogenesis of the Salmonella-containing vacuole. Traffic 4, 587–599.[CrossRef]
    [Google Scholar]
  47. Knodler, L. A. & Steele-Mortimer, O. ( 2005; ). The Salmonella effector PipB2 affects late endosome/lysosome distribution to mediate Sif extension. Mol Biol Cell 16, 4108–4123.[CrossRef]
    [Google Scholar]
  48. Knodler, L. A., Vallance, B. A., Hensel, M., Jackel, D., Finlay, B. B. & Steele-Mortimer, O. ( 2003; ). Salmonella type III effectors PipB and PipB2 are targeted to detergent-resistant microdomains on internal host cell membranes. Mol Microbiol 49, 685–704.
    [Google Scholar]
  49. Kuhle, V. & Hensel, M. ( 2002; ). SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulate aggregation of endosomal compartments. Cell Microbiol 4, 813–824.[CrossRef]
    [Google Scholar]
  50. Kuhle, V., Jackel, D. & Hensel, M. ( 2004; ). Effector proteins encoded by salmonella pathogenicity island 2 interfere with the microtubule cytoskeleton after translocation into host cells. Traffic 5, 356–370.[CrossRef]
    [Google Scholar]
  51. Lee, S. H. & Galan, J. E. ( 2004; ). Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol Microbiol 51, 483–495.[CrossRef]
    [Google Scholar]
  52. Linstedt, A. D. & Hauri, H. P. ( 1993; ). Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kDa. Mol Biol Cell 4, 679–693.[CrossRef]
    [Google Scholar]
  53. Lloyd, S. A., Norman, M., Rosqvist, R. & Wolf-Watz, H. ( 2001; ). Yersinia YopE is targetted for type III secretion by N-terminal, not mRNA, signals. Mol Microbiol 39, 520–531.[CrossRef]
    [Google Scholar]
  54. Miao, E. A. & Miller, S. I. ( 2000; ). A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium. Proc Natl Acad Sci U S A 97, 7539–7544.[CrossRef]
    [Google Scholar]
  55. Miao, E. A., Brittnacher, M., Haraga, A., Jeng, R. L., Welch, M. D. & Miller, S. I. ( 2003; ). Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. Mol Microbiol 48, 401–415.[CrossRef]
    [Google Scholar]
  56. Nikolaus, T., Deiwick, J., Rappl, C., Freeman, J. A., Schroder, W., Miller, S. I. & Hensel, M. ( 2001; ). SseBCD proteins are secreted by the type III secretion system of Salmonella pathogenicity island 2 and function as a translocon. J Bacteriol 183, 6036–6045.[CrossRef]
    [Google Scholar]
  57. Ochman, H., Soncini, F. C., Solomon, F. & Groisman, E. A. ( 1996; ). Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A 93, 7800–7804.[CrossRef]
    [Google Scholar]
  58. Ohlson, M. B., Fluhr, K., Birmingham, C. L., Brumell, J. H. & Miller, S. I. ( 2005; ). SseJ deacylase activity by Salmonella enterica serovar Typhimurium promotes virulence in mice. Infect Immun 73, 6249–6259.[CrossRef]
    [Google Scholar]
  59. Ramamurthi, K. S. & Schneewind, O. ( 2003; ). Substrate recognition by the Yersinia type III protein secretion machinery. Mol Microbiol 50, 1095–1102.[CrossRef]
    [Google Scholar]
  60. Reinicke, A. T., Hutchinson, J. L., Magee, A. I., Mastroeni, P., Trowsdale, J. & Kelly, A. P. ( 2005; ). A Salmonella typhimurium effector protein SifA is modified by host cell prenylation and S-acylation machinery. J Biol Chem 280, 14620–14627.[CrossRef]
    [Google Scholar]
  61. Richter-Dahlfors, A., Buchan, A. M. J. & Finlay, B. B. ( 1997; ). Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 186, 569–580.[CrossRef]
    [Google Scholar]
  62. Ruiz-Albert, J., Yu, X. J., Beuzon, C. R., Blakey, A. N., Galyov, E. E. & Holden, D. W. ( 2002; ). Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Mol Microbiol 44, 645–661.[CrossRef]
    [Google Scholar]
  63. Salcedo, S. P. & Holden, D. W. ( 2003; ). SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J 22, 5003–5014.[CrossRef]
    [Google Scholar]
  64. Salcedo, S. P., Noursadeghi, M., Cohen, J. & Holden, D. W. ( 2001; ). Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell Microbiol 3, 587–597.[CrossRef]
    [Google Scholar]
  65. Seelig, H. P., Schranz, P., Schroter, H., Wiemann, C., Griffiths, G. & Renz, M. ( 1994; ). Molecular genetic analyses of a 376-kilodalton Golgi complex membrane protein (giantin). Mol Cell Biol 14, 2564–2576.[CrossRef]
    [Google Scholar]
  66. Shea, J. E., Hensel, M., Gleeson, C. & Holden, D. W. ( 1996; ). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 93, 2593–2597.[CrossRef]
    [Google Scholar]
  67. Shea, J. E., Beuzon, C. R., Gleeson, C., Mundy, R. & Holden, D. W. ( 1999; ). Influence of the Salmonella typhimurium pathogenicity island 2 type III secretion system on bacterial growth in the mouse. Infect Immun 67, 213–219.
    [Google Scholar]
  68. Sory, M. P., Boland, A., Lambermont, I. & Cornelis, G. R. ( 1995; ). Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. Proc Natl Acad Sci U S A 92, 11998–12002.[CrossRef]
    [Google Scholar]
  69. Steele-Mortimer, O., Meresse, S., Gorvel, J.-P., Toh, B.-H. & Finlay, B. B. ( 1999; ). Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell Microbiol 1, 33–49.[CrossRef]
    [Google Scholar]
  70. Stein, M. A., Leung, K. Y., Zwick, M., Garcia-del Portillo, F. & Finlay, B. B. ( 1996; ). Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol Microbiol 20, 151–164.[CrossRef]
    [Google Scholar]
  71. Stender, S., Friebel, A., Linder, S., Rohde, M., Mirold, S. & Hardt, W. D. ( 2000; ). Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol 36, 1206–1221.
    [Google Scholar]
  72. Takeuchi, A. ( 1967; ). Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol 50, 109–136.
    [Google Scholar]
  73. Tsolis, R. M., Kingsley, R. A., Townsend, S. M., Ficht, T. A., Adams, L. G. & Baumler, A. J. ( 1999; ). Of mice, calves, and men. Comparison of the mouse typhoid model with other Salmonella infections. Adv Exp Med Biol 473, 261–274.
    [Google Scholar]
  74. Vasquez-Torres, A., Jones-Carson, J., Baumler, A. J. & other authors ( 1999; ). Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401, 804–808.[CrossRef]
    [Google Scholar]
  75. Vazquez-Torres, A., Xu, Y., Jones-Carson, J., Holden, D. W., Lucia, S. M., Dinauer, M. C., Mastroeni, P. & Fang, F. C. ( 2000; ). Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287, 1655–1658.[CrossRef]
    [Google Scholar]
  76. Vazquez-Torres, A., Fantuzzi, G., Edwards, C. K., 3rd, Dinarello, C. A. & Fang, F. C. ( 2001; ). Defective localization of the NADPH phagocyte oxidase to Salmonella-containing phagosomes in tumor necrosis factor p55 receptor-deficient macrophages. Proc Natl Acad Sci U S A 98, 2561–2565.[CrossRef]
    [Google Scholar]
  77. Waterman, S. R. & Holden, D. W. ( 2003; ). Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 5, 501–511.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28995-0
Loading
/content/journal/micro/10.1099/mic.0.28995-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error