1887

Abstract

(Lm) is a Gram-positive intracellular pathogen that can elicit strong cellular immunity. An attenuated strain (Lmdd) with deletions in two genes ( and ) required for -alanine synthesis and viability has been shown to induce long-lived protective systemic and mucosal immune responses in mice when administered in the presence of the required amino acid. To bypass the necessity for exogenous -alanine without compromising the safety of the original strain, the defect of Lmdd was complemented with a heterologous gene, and the effects of truncating the upstream region of the gene on its transcription efficiency and of modifying its protein product with an tag at the 3′-terminus were examined. The strains with 551 bp and 80 bp upstream regions showed high levels of transcription and grew without -alanine. The strains with the shortest upstream regions, 48 bp and 18 bp, showed greatly decreased levels of transcription and failed to grow in the absence of -alanine. Addition of an tag to the longer genes resulted in a somewhat altered growth pattern in media and a reduced plaque size on L2 fibroblasts. These bacteria contained low levels of racemase protein and reduced free pools of -alanine. One of the strains tested further, Lmdd/pA80S, was rapidly cleared from the spleens of infected mice but nevertheless induced a strong immune response that protected mice against challenge by wild-type . These bacteria can thus induce immune responses in mice comparable to the original Lmdd strain, but without the need for exogenous -alanine, and may have use as a live vaccine vector against infectious diseases and cancers.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28994-0
2006-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/3091.html?itemId=/content/journal/micro/10.1099/mic.0.28994-0&mimeType=html&fmt=ahah

References

  1. Ada G. L. 1990; The immunological principles of vaccination. Lancet 335:523–526 [CrossRef]
    [Google Scholar]
  2. Angelakopoulos H, Loock K, Sisul D. M, Jensen E. R, Miller J. F, Hohmann E. L. 2002; Safety and shedding of an attenuated strain of Listeria monocytogenes with a deletion of actA/plcB in adult volunteers: a dose escalation study of oral inoculation. Infect Immun 70:3592–3601 [CrossRef]
    [Google Scholar]
  3. Bergmeyer J, Grassl M. 1983 In Methods of Enzymatic Analysis , vol. VIII, Metabolites 3: Lipids, Amino Acids, and Related Compounds pp  336–340 Edited by Bergmeyer H. U. Weinheim: VCH;
    [Google Scholar]
  4. Bouwer H. G. A, Shen H, Fan X, Miller J. F, Barry R. A, Hinrichs D. J. 1999; Existing antilisterial immunity does not inhibit the development of a Listeria monocytogenes -specific primary cytotoxic T-lymphocyte response. Infect Immun 67:253–258
    [Google Scholar]
  5. Braciale T. J, Morrison L. A, Sweetser M. T, Sambrook J, Gething M. J, Braciale V. L. 1987; Antigen presentation pathways to class I and class II MHC-restricted T lymphocytes. Immunol Rev 98:95–114 [CrossRef]
    [Google Scholar]
  6. Brockstedt D. G, Giedlin M. A, Leong M. L. 8 other authors 2004; Listeria -based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci U S A 101:13832–13837 [CrossRef]
    [Google Scholar]
  7. Brockstedt D. G, Bahjat K. S, Giedlin M. A. 17 other authors 2005; Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nat Med 11:853–860 [CrossRef]
    [Google Scholar]
  8. Bruhn K. W, Craft N, Nguyen B. D, Yip J, Miller J. F. 2005; Characterization of anti-self CD8 T-cell responses stimulated by recombinant Listeria monocytogenes expressing the melanoma antigen TRP-2. Vaccine 23:4263–4272 [CrossRef]
    [Google Scholar]
  9. de Chastellier C., Berche P. 1994; Fate of Listeria monocytogenes in murine macrophages: evidence for simultaneous killing and survival of intracellular bacteria. Infect Immun 62:543–553
    [Google Scholar]
  10. Dunne D. W, Resnick D, Greenberg J, Krieger M, Joiner K. A. 1994; The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci U S A 91:1863–1867 [CrossRef]
    [Google Scholar]
  11. Finelli A, Kerksiek K. M, Allen S. E, Marshall N, Mercado R, Pilip I, Busch D. H, Pamer E. G. 1999; MHC class I restricted T cell responses to Listeria monocytogenes , an intracellular bacterial pathogen. Immunol Res 19:211–223 [CrossRef]
    [Google Scholar]
  12. Gaillard J. L, Berche P, Sansonetti P. 1986; Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes . Infect Immun 52:50–55
    [Google Scholar]
  13. Gaillard J, Berche P, Frehel C, Gouin E, Cossart P. 1991; Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65:1127–1141 [CrossRef]
    [Google Scholar]
  14. Gaillard J. L, Jaubert F, Berche P. 1996; The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo . J Exp Med 183:359–369 [CrossRef]
    [Google Scholar]
  15. Gellin B. G, Broome C. V. 1989; Listeriosis. JAMA 261:1313–1320 [CrossRef]
    [Google Scholar]
  16. Goossens P. L, Milon G, Cossart P, Saron M.-F. 1995; Attenuated Listeria monocytogenes as a live vector for induction of CD8[sup]+[/sup] T cells in vivo : a study with the nucleoprotein of the lymphocytic choriomeningitis virus. Int Immunol 7:797–802 [CrossRef]
    [Google Scholar]
  17. Gottesman S, Roche E, Zhou Y, Sauer R. T. 1998; The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12:1338–1347 [CrossRef]
    [Google Scholar]
  18. Gunn G. R, Zubair A, Peters C, Pan Z. K, Wu T. C, Paterson Y. 2001; Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol 167:6471–6479 [CrossRef]
    [Google Scholar]
  19. Harty J. T, Tvinnereim A. R, White D. W. 2000; CD8[sup]+[/sup] T cell effector mechanisms in resistance to infection. Annu Rev Immunol 18:275–308 [CrossRef]
    [Google Scholar]
  20. Ikonomidis G, Portnoy D, Gerhard W, Paterson Y. 1997; Influenza-specific immunity induced by recombinant Listeria monocytogenes vaccines. Vaccine 15:433–440 [CrossRef]
    [Google Scholar]
  21. Jensen E. R, Selvakumar R, Shen H, Ahmed R, Wettstein F. O, Miller J. F. 1997; Recombinant Listeria monocytogenes vaccination eliminates papillomavirus-induced tumors and prevents papilloma formation from viral DNA. J Virol 71:8467–8474
    [Google Scholar]
  22. Kadish A. S, Einstein M. H. 2005; Vaccine strategies for human papillomavirus-associated cancers. Curr Opin Oncol 17:456–461 [CrossRef]
    [Google Scholar]
  23. Karzai A. W, Susskind M. M, Sauer R. T. 1999; SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J 18:3793–3799 [CrossRef]
    [Google Scholar]
  24. Karzai A. W, Roche E. D, Sauer R. T. 2000; The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol 7:449–455 [CrossRef]
    [Google Scholar]
  25. Kathariou S, Metz P, Hof H, Goebel W. 1987; Tn 916 -induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes . J Bacteriol 169:1291–1297
    [Google Scholar]
  26. Kaufmann S. H. E. 1993; Immunity to intracellular bacteria. Annu Rev Immunol 11:129–163 [CrossRef]
    [Google Scholar]
  27. Keiler K. C, Waller P. R, Sauer R. T. 1996; Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271:990–993 [CrossRef]
    [Google Scholar]
  28. Keiler K. C, Shapiro L, Williams K. P. 2000; tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: a two-piece tmRNA functions in Caulobacter . Proc Natl Acad Sci U S A 97:7778–7783 [CrossRef]
    [Google Scholar]
  29. Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P. 1992; L. monocytogenes -induced actin assembly requires the actA gene product, a surface protein. Cell 68:521–531 [CrossRef]
    [Google Scholar]
  30. Li Z, Zhao X, Higgins D. E, Frankel F. R. 2005; Conditional lethality yields a new vaccine strain of Listeria monocytogenes for the induction of cell-mediated immunity. Infect Immun 73:5065–5073 [CrossRef]
    [Google Scholar]
  31. Mackaness G. B. 1962; Cellular resistance to infection. J Exp Med 116:381–406 [CrossRef]
    [Google Scholar]
  32. Marzo A. L, Vezys V, Williams K, Tough D. F, Lefrancois L. 2002; Tissue-level regulation of Th1 and Th2 primary and memory CD4 T cells in response to Listeria infection. J Immunol 168:4504–4510 [CrossRef]
    [Google Scholar]
  33. Mengin-Lecreulx D, Flouret B, van Heijenoort J. 1982; Cytoplasmic steps of peptidoglycan synthesis in Escherichia coli . J Bacteriol 151:1109–1117
    [Google Scholar]
  34. Mercado R, Vijh S, Allen S. E, Kerksiek K, Pilip I. M, Pamer E. G. 2000; Early programming of T cell populations responding to bacterial infection. J Immunol 165:6833–6839 [CrossRef]
    [Google Scholar]
  35. Miki K, Nagata T, Tanaka T, Kim Y. H, Uchijima M, Ohara N, Nakamura S, Okada M, Koide Y. 2004; Induction of protective cellular immunity against Mycobacterium tuberculosis by recombinant attenuated self-destructing Listeria monocytogenes strains harboring eukaryotic expression plasmids for antigen 85 complex and MPB/MPT51. Infect Immun 72:2014–2021 [CrossRef]
    [Google Scholar]
  36. North R. J, Berche P. A, Newborg M. F. 1981; Immunologic consequences of antibiotic-induced abridgement of bacterial infection: effect on generation and loss of protective T cells and level of immunologic memory. J Immunol 127:342–346
    [Google Scholar]
  37. O'Riordan M, Moors M. A, Portnoy D. A. 2003; Listeria intracellular growth and virulence require host-derived lipoic acid. Science 302:462–464 [CrossRef]
    [Google Scholar]
  38. Pamer E. G. 2004; Immune responses to Listeria monocytogenes . Nat Rev Immunol 4:812–823 [CrossRef]
    [Google Scholar]
  39. Pearce E. L, Shedlock D. J, Shen H. 2004; Functional characterzation of MHC class II-restricted CD8 [sup]+[/sup] CD4[sup]−[/sup] and CD8[sup]−[/sup]CD4[sup]−[/sup] T cell responses to infection in CD4[sup]−/−[/sup] mice. J Immunol 173:2494–2499 [CrossRef]
    [Google Scholar]
  40. Peters C, Domann E, Darbouche A, Chakraborty T, Mielke M. E. 2003; Tailoring host immune responses to Listeria by manipulation of virulence genes – the interface between innate and acquired immunity. FEMS Immunol Med Microbiol 35:243–253 [CrossRef]
    [Google Scholar]
  41. Portnoy D. A, Jacks P. S, Hinrichs D. J. 1988; Role of hemolysin for the intracellular growth of Listeria monocytogenes . J Exp Med 167:1459–1471 [CrossRef]
    [Google Scholar]
  42. Rayevskaya M. V, Frankel F. R. 2001; Systemic immunity and mucosal immunity are induced against Human Immunodeficiency Virus Gag protein in mice by a new hyperattenuated strain of Listeria monocytogenes . J Virol 75:2786–2791 [CrossRef]
    [Google Scholar]
  43. Schafer R, Portnoy D. A, Brassell S. A, Paterson Y. 1992; Induction of a cellular immune response to a foreign antigen by a recombinant Listeria monocytogenes vaccine. J Immunol 149:53–59
    [Google Scholar]
  44. Shen H, Slifka M. K, Matloubian M, Jensen E. R, Ahmed R, Miller J. F. 1995; Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc Natl Acad Sci U S A 92:3987–3991 [CrossRef]
    [Google Scholar]
  45. Smith K, Youngman P. 1992; Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74:705–711 [CrossRef]
    [Google Scholar]
  46. Smith G. A, Marquis H, Jones S, Johnston N. C, Portnoy D. A, Goldfine H. 1995; The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun 63:4231–4237
    [Google Scholar]
  47. Starks H, Bruhn K. W, Shen H. 8 other authors 2004; Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J Immunol 173:420–427 [CrossRef]
    [Google Scholar]
  48. Stevens R, Lavoy A, Nordone S, Burkhard M, Dean G. A. 2005; Pre-existing immunity to pathogenic Listeria monocytogenes does not prevent induction of immune responses to feline immunodeficiency virus by a novel recombinant Listeria monocytogenes vaccine. Vaccine 23:1479–1490 [CrossRef]
    [Google Scholar]
  49. Stritzker J, Janda J, Schoen C, Taupp M, Pilgrim S, Gentschev I, Schreier P, Geginat G, Goebel W. 2004; Growth, virulence, and immunogenicity of Listeria monocytogenes aro mutants. Infect Immun 72:5622–5629 [CrossRef]
    [Google Scholar]
  50. Sun A. N, Camilli A, Portnoy D. A. 1990; Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun 58:3770–3778
    [Google Scholar]
  51. Suzuki H, Kurihara Y, Takeya M. 22 other authors 1997; A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296 [CrossRef]
    [Google Scholar]
  52. Thompson R. J, Bouwer H. G. A, Portnoy D. A, Frankel F. R. 1998; Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires d-alanine for growth. Infect Immun 66:3552–3561
    [Google Scholar]
  53. Unanue E. R. 1997; Inter-relationship among macrophages, natural killer cells and neutrophils in early stages of Listeria resistance. Curr Opin Immunol 9:35–43 [CrossRef]
    [Google Scholar]
  54. Wiegert T, Schumann W. 2001; SsrA-mediated tagging in Bacillus subtilis . J Bacteriol 183:3885–3889 [CrossRef]
    [Google Scholar]
  55. Wipke B. T, Jameson S. C, Bevan M. J, Pamer E. G. 1993; Variable binding affinities of listeriolysin O peptides for the H-2Kd class I molecule. Eur J Immunol 23:2005–2010 [CrossRef]
    [Google Scholar]
  56. Wirth R, An F. Y, Clewell D. B. 1986; Highly efficient protoplast transformation system for Streptococcus faecalis and a new Escherichia coli - S. faecalis shuttle vector. J Bacteriol 165:831–836
    [Google Scholar]
  57. Yoshimura K, Jain A, Allen H. E. 12 other authors 2006; Selective targeting of antitumor immune responses with engineered live-attenuated Listeria monocytogenes . Cancer Res 66:1096–1104 [CrossRef]
    [Google Scholar]
  58. Zhao X, Li Z, Gu B, Frankel F. R. 2005; Pathogenicity and immunogenicity of a vaccine strain of Listeria monocytogenes that relies on a suicide plasmid to supply an essential gene product. Infect Immun 73:5789–5798 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28994-0
Loading
/content/journal/micro/10.1099/mic.0.28994-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error