1887

Abstract

(Lm) is a Gram-positive intracellular pathogen that can elicit strong cellular immunity. An attenuated strain (Lmdd) with deletions in two genes ( and ) required for -alanine synthesis and viability has been shown to induce long-lived protective systemic and mucosal immune responses in mice when administered in the presence of the required amino acid. To bypass the necessity for exogenous -alanine without compromising the safety of the original strain, the defect of Lmdd was complemented with a heterologous gene, and the effects of truncating the upstream region of the gene on its transcription efficiency and of modifying its protein product with an tag at the 3′-terminus were examined. The strains with 551 bp and 80 bp upstream regions showed high levels of transcription and grew without -alanine. The strains with the shortest upstream regions, 48 bp and 18 bp, showed greatly decreased levels of transcription and failed to grow in the absence of -alanine. Addition of an tag to the longer genes resulted in a somewhat altered growth pattern in media and a reduced plaque size on L2 fibroblasts. These bacteria contained low levels of racemase protein and reduced free pools of -alanine. One of the strains tested further, Lmdd/pA80S, was rapidly cleared from the spleens of infected mice but nevertheless induced a strong immune response that protected mice against challenge by wild-type . These bacteria can thus induce immune responses in mice comparable to the original Lmdd strain, but without the need for exogenous -alanine, and may have use as a live vaccine vector against infectious diseases and cancers.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28994-0
2006-10-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/3091.html?itemId=/content/journal/micro/10.1099/mic.0.28994-0&mimeType=html&fmt=ahah

References

  1. Ada, G. L. ( 1990; ). The immunological principles of vaccination. Lancet 335, 523–526.[CrossRef]
    [Google Scholar]
  2. Angelakopoulos, H., Loock, K., Sisul, D. M., Jensen, E. R., Miller, J. F. & Hohmann, E. L. ( 2002; ). Safety and shedding of an attenuated strain of Listeria monocytogenes with a deletion of actA/plcB in adult volunteers: a dose escalation study of oral inoculation. Infect Immun 70, 3592–3601.[CrossRef]
    [Google Scholar]
  3. Bergmeyer, J. & Grassl, M. ( 1983; ). In Methods of Enzymatic Analysis, vol. VIII, Metabolites 3: Lipids, Amino Acids, and Related Compounds, pp. 336–340. Edited by H. U. Bergmeyer. Weinheim: VCH.
  4. Bouwer, H. G. A., Shen, H., Fan, X., Miller, J. F., Barry, R. A. & Hinrichs, D. J. ( 1999; ). Existing antilisterial immunity does not inhibit the development of a Listeria monocytogenes-specific primary cytotoxic T-lymphocyte response. Infect Immun 67, 253–258.
    [Google Scholar]
  5. Braciale, T. J., Morrison, L. A., Sweetser, M. T., Sambrook, J., Gething, M. J. & Braciale, V. L. ( 1987; ). Antigen presentation pathways to class I and class II MHC-restricted T lymphocytes. Immunol Rev 98, 95–114.[CrossRef]
    [Google Scholar]
  6. Brockstedt, D. G., Giedlin, M. A., Leong, M. L. & 8 other authors ( 2004; ). Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci U S A 101, 13832–13837.[CrossRef]
    [Google Scholar]
  7. Brockstedt, D. G., Bahjat, K. S., Giedlin, M. A. & 17 other authors ( 2005; ). Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nat Med 11, 853–860.[CrossRef]
    [Google Scholar]
  8. Bruhn, K. W., Craft, N., Nguyen, B. D., Yip, J. & Miller, J. F. ( 2005; ). Characterization of anti-self CD8 T-cell responses stimulated by recombinant Listeria monocytogenes expressing the melanoma antigen TRP-2. Vaccine 23, 4263–4272.[CrossRef]
    [Google Scholar]
  9. de Chastellier, C. & Berche, P. ( 1994; ). Fate of Listeria monocytogenes in murine macrophages: evidence for simultaneous killing and survival of intracellular bacteria. Infect Immun 62, 543–553.
    [Google Scholar]
  10. Dunne, D. W., Resnick, D., Greenberg, J., Krieger, M. & Joiner, K. A. ( 1994; ). The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci U S A 91, 1863–1867.[CrossRef]
    [Google Scholar]
  11. Finelli, A., Kerksiek, K. M., Allen, S. E., Marshall, N., Mercado, R., Pilip, I., Busch, D. H. & Pamer, E. G. ( 1999; ). MHC class I restricted T cell responses to Listeria monocytogenes, an intracellular bacterial pathogen. Immunol Res 19, 211–223.[CrossRef]
    [Google Scholar]
  12. Gaillard, J. L., Berche, P. & Sansonetti, P. ( 1986; ). Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect Immun 52, 50–55.
    [Google Scholar]
  13. Gaillard, J., Berche, P., Frehel, C., Gouin, E. & Cossart, P. ( 1991; ). Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65, 1127–1141.[CrossRef]
    [Google Scholar]
  14. Gaillard, J. L., Jaubert, F. & Berche, P. ( 1996; ). The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo. J Exp Med 183, 359–369.[CrossRef]
    [Google Scholar]
  15. Gellin, B. G. & Broome, C. V. ( 1989; ). Listeriosis. JAMA 261, 1313–1320.[CrossRef]
    [Google Scholar]
  16. Goossens, P. L., Milon, G., Cossart, P. & Saron, M.-F. ( 1995; ). Attenuated Listeria monocytogenes as a live vector for induction of CD8+ T cells in vivo: a study with the nucleoprotein of the lymphocytic choriomeningitis virus. Int Immunol 7, 797–802.[CrossRef]
    [Google Scholar]
  17. Gottesman, S., Roche, E., Zhou, Y. & Sauer, R. T. ( 1998; ). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12, 1338–1347.[CrossRef]
    [Google Scholar]
  18. Gunn, G. R., Zubair, A., Peters, C., Pan, Z. K., Wu, T. C. & Paterson, Y. ( 2001; ). Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol 167, 6471–6479.[CrossRef]
    [Google Scholar]
  19. Harty, J. T., Tvinnereim, A. R. & White, D. W. ( 2000; ). CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol 18, 275–308.[CrossRef]
    [Google Scholar]
  20. Ikonomidis, G., Portnoy, D., Gerhard, W. & Paterson, Y. ( 1997; ). Influenza-specific immunity induced by recombinant Listeria monocytogenes vaccines. Vaccine 15, 433–440.[CrossRef]
    [Google Scholar]
  21. Jensen, E. R., Selvakumar, R., Shen, H., Ahmed, R., Wettstein, F. O. & Miller, J. F. ( 1997; ). Recombinant Listeria monocytogenes vaccination eliminates papillomavirus-induced tumors and prevents papilloma formation from viral DNA. J Virol 71, 8467–8474.
    [Google Scholar]
  22. Kadish, A. S. & Einstein, M. H. ( 2005; ). Vaccine strategies for human papillomavirus-associated cancers. Curr Opin Oncol 17, 456–461.[CrossRef]
    [Google Scholar]
  23. Karzai, A. W., Susskind, M. M. & Sauer, R. T. ( 1999; ). SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J 18, 3793–3799.[CrossRef]
    [Google Scholar]
  24. Karzai, A. W., Roche, E. D. & Sauer, R. T. ( 2000; ). The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol 7, 449–455.[CrossRef]
    [Google Scholar]
  25. Kathariou, S., Metz, P., Hof, H. & Goebel, W. ( 1987; ). Tn916-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes. J Bacteriol 169, 1291–1297.
    [Google Scholar]
  26. Kaufmann, S. H. E. ( 1993; ). Immunity to intracellular bacteria. Annu Rev Immunol 11, 129–163.[CrossRef]
    [Google Scholar]
  27. Keiler, K. C., Waller, P. R. & Sauer, R. T. ( 1996; ). Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990–993.[CrossRef]
    [Google Scholar]
  28. Keiler, K. C., Shapiro, L. & Williams, K. P. ( 2000; ). tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: a two-piece tmRNA functions in Caulobacter. Proc Natl Acad Sci U S A 97, 7778–7783.[CrossRef]
    [Google Scholar]
  29. Kocks, C., Gouin, E., Tabouret, M., Berche, P., Ohayon, H. & Cossart, P. ( 1992; ). L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68, 521–531.[CrossRef]
    [Google Scholar]
  30. Li, Z., Zhao, X., Higgins, D. E. & Frankel, F. R. ( 2005; ). Conditional lethality yields a new vaccine strain of Listeria monocytogenes for the induction of cell-mediated immunity. Infect Immun 73, 5065–5073.[CrossRef]
    [Google Scholar]
  31. Mackaness, G. B. ( 1962; ). Cellular resistance to infection. J Exp Med 116, 381–406.[CrossRef]
    [Google Scholar]
  32. Marzo, A. L., Vezys, V., Williams, K., Tough, D. F. & Lefrancois, L. ( 2002; ). Tissue-level regulation of Th1 and Th2 primary and memory CD4 T cells in response to Listeria infection. J Immunol 168, 4504–4510.[CrossRef]
    [Google Scholar]
  33. Mengin-Lecreulx, D., Flouret, B. & van Heijenoort, J. ( 1982; ). Cytoplasmic steps of peptidoglycan synthesis in Escherichia coli. J Bacteriol 151, 1109–1117.
    [Google Scholar]
  34. Mercado, R., Vijh, S., Allen, S. E., Kerksiek, K., Pilip, I. M. & Pamer, E. G. ( 2000; ). Early programming of T cell populations responding to bacterial infection. J Immunol 165, 6833–6839.[CrossRef]
    [Google Scholar]
  35. Miki, K., Nagata, T., Tanaka, T., Kim, Y. H., Uchijima, M., Ohara, N., Nakamura, S., Okada, M. & Koide, Y. ( 2004; ). Induction of protective cellular immunity against Mycobacterium tuberculosis by recombinant attenuated self-destructing Listeria monocytogenes strains harboring eukaryotic expression plasmids for antigen 85 complex and MPB/MPT51. Infect Immun 72, 2014–2021.[CrossRef]
    [Google Scholar]
  36. North, R. J., Berche, P. A. & Newborg, M. F. ( 1981; ). Immunologic consequences of antibiotic-induced abridgement of bacterial infection: effect on generation and loss of protective T cells and level of immunologic memory. J Immunol 127, 342–346.
    [Google Scholar]
  37. O'Riordan, M., Moors, M. A. & Portnoy, D. A. ( 2003; ). Listeria intracellular growth and virulence require host-derived lipoic acid. Science 302, 462–464.[CrossRef]
    [Google Scholar]
  38. Pamer, E. G. ( 2004; ). Immune responses to Listeria monocytogenes. Nat Rev Immunol 4, 812–823.[CrossRef]
    [Google Scholar]
  39. Pearce, E. L., Shedlock, D. J. & Shen, H. ( 2004; ). Functional characterzation of MHC class II-restricted CD8 + CD4 and CD8CD4 T cell responses to infection in CD4−/− mice. J Immunol 173, 2494–2499.[CrossRef]
    [Google Scholar]
  40. Peters, C., Domann, E., Darbouche, A., Chakraborty, T. & Mielke, M. E. ( 2003; ). Tailoring host immune responses to Listeria by manipulation of virulence genes – the interface between innate and acquired immunity. FEMS Immunol Med Microbiol 35, 243–253.[CrossRef]
    [Google Scholar]
  41. Portnoy, D. A., Jacks, P. S. & Hinrichs, D. J. ( 1988; ). Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167, 1459–1471.[CrossRef]
    [Google Scholar]
  42. Rayevskaya, M. V. & Frankel, F. R. ( 2001; ). Systemic immunity and mucosal immunity are induced against Human Immunodeficiency Virus Gag protein in mice by a new hyperattenuated strain of Listeria monocytogenes. J Virol 75, 2786–2791.[CrossRef]
    [Google Scholar]
  43. Schafer, R., Portnoy, D. A., Brassell, S. A. & Paterson, Y. ( 1992; ). Induction of a cellular immune response to a foreign antigen by a recombinant Listeria monocytogenes vaccine. J Immunol 149, 53–59.
    [Google Scholar]
  44. Shen, H., Slifka, M. K., Matloubian, M., Jensen, E. R., Ahmed, R. & Miller, J. F. ( 1995; ). Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc Natl Acad Sci U S A 92, 3987–3991.[CrossRef]
    [Google Scholar]
  45. Smith, K. & Youngman, P. ( 1992; ). Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74, 705–711.[CrossRef]
    [Google Scholar]
  46. Smith, G. A., Marquis, H., Jones, S., Johnston, N. C., Portnoy, D. A. & Goldfine, H. ( 1995; ). The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun 63, 4231–4237.
    [Google Scholar]
  47. Starks, H., Bruhn, K. W., Shen, H. & 8 other authors ( 2004; ). Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J Immunol 173, 420–427.[CrossRef]
    [Google Scholar]
  48. Stevens, R., Lavoy, A., Nordone, S., Burkhard, M. & Dean, G. A. ( 2005; ). Pre-existing immunity to pathogenic Listeria monocytogenes does not prevent induction of immune responses to feline immunodeficiency virus by a novel recombinant Listeria monocytogenes vaccine. Vaccine 23, 1479–1490.[CrossRef]
    [Google Scholar]
  49. Stritzker, J., Janda, J., Schoen, C., Taupp, M., Pilgrim, S., Gentschev, I., Schreier, P., Geginat, G. & Goebel, W. ( 2004; ). Growth, virulence, and immunogenicity of Listeria monocytogenes aro mutants. Infect Immun 72, 5622–5629.[CrossRef]
    [Google Scholar]
  50. Sun, A. N., Camilli, A. & Portnoy, D. A. ( 1990; ). Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun 58, 3770–3778.
    [Google Scholar]
  51. Suzuki, H., Kurihara, Y., Takeya, M. & 22 other authors ( 1997; ). A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386, 292–296.[CrossRef]
    [Google Scholar]
  52. Thompson, R. J., Bouwer, H. G. A., Portnoy, D. A. & Frankel, F. R. ( 1998; ). Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires d-alanine for growth. Infect Immun 66, 3552–3561.
    [Google Scholar]
  53. Unanue, E. R. ( 1997; ). Inter-relationship among macrophages, natural killer cells and neutrophils in early stages of Listeria resistance. Curr Opin Immunol 9, 35–43.[CrossRef]
    [Google Scholar]
  54. Wiegert, T. & Schumann, W. ( 2001; ). SsrA-mediated tagging in Bacillus subtilis. J Bacteriol 183, 3885–3889.[CrossRef]
    [Google Scholar]
  55. Wipke, B. T., Jameson, S. C., Bevan, M. J. & Pamer, E. G. ( 1993; ). Variable binding affinities of listeriolysin O peptides for the H-2Kd class I molecule. Eur J Immunol 23, 2005–2010.[CrossRef]
    [Google Scholar]
  56. Wirth, R., An, F. Y. & Clewell, D. B. ( 1986; ). Highly efficient protoplast transformation system for Streptococcus faecalis and a new Escherichia coli-S. faecalis shuttle vector. J Bacteriol 165, 831–836.
    [Google Scholar]
  57. Yoshimura, K., Jain, A., Allen, H. E. & 12 other authors ( 2006; ). Selective targeting of antitumor immune responses with engineered live-attenuated Listeria monocytogenes. Cancer Res 66, 1096–1104.[CrossRef]
    [Google Scholar]
  58. Zhao, X., Li, Z., Gu, B. & Frankel, F. R. ( 2005; ). Pathogenicity and immunogenicity of a vaccine strain of Listeria monocytogenes that relies on a suicide plasmid to supply an essential gene product. Infect Immun 73, 5789–5798.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28994-0
Loading
/content/journal/micro/10.1099/mic.0.28994-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error