1887

Abstract

is the causative agent of bovine tuberculosis. Various genetic typing techniques have been used to trace the reservoirs of infection; however, they have limited success in population genetics and outbreak studies. Fourier-transform infrared spectroscopy (FT-IR) is a rapid phenotypic typing technique, which may be used to generate a metabolic fingerprinting and is increasingly used to characterize bacteria. When coupled with multivariate cluster analysis, this powerful combination has sufficient resolving power to discriminate bacteria down to subspecies level; however, to date this method has not been used in the differentiation of mycobacteria. Multiple isolates of the ten major spoligotypes in the UK, recovered from different geographical locations, were analysed using FT-IR. Hierarchical cluster analysis of the spectra showed that the isolates could be differentiated according to their spoligotypes. Six of the spoligotype FT-IR clusters were very homogeneous and all isolates were recovered together. However, the remaining four groups displayed a more heterogeneous phenotype, which may reflect greater variation than previously suspected within these groups. Included in the ten spoligotypes are the two most dominant isolates in the UK, designated types 9 and 17. Whilst type 17 showed a highly conserved phenotype as judged by FT-IR, type 9 showed a very heterogeneous metabolic profile and isolates were recovered throughout the dendrogram. This variation in type 9 is reflected in the high degree of diversity observed by variable number tandem repeats (VNTR) analysis, underlining the exquisite resolving power of FT-IR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28986-0
2006-09-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2757.html?itemId=/content/journal/micro/10.1099/mic.0.28986-0&mimeType=html&fmt=ahah

References

  1. Aranaz, A., Liebana, E., Mateos, A. & 8 other authors ( 1996; ). Spacer oligonucleotide typing of Mycobacterium bovis strains from cattle and other animals: a tool for studying epidemiology of tuberculosis. J Clin Microbiol 34, 2734–2740.
    [Google Scholar]
  2. Clifton-Hadley, R. S., Wilesmith, J. W., Richards, M. S., Upton, A. & Johnston, S. ( 1995; ). The occurance of Mycobacterium bovis infection in cattle in and around an area subject to extensive badger (Meles meles) control. Epidemiol Infect 114, 179–193.[CrossRef]
    [Google Scholar]
  3. Delahay, R. J., Cheeseman, C. L. & Clifton-Hadley, R. S. ( 2001; ). Wildlife disease reservoirs: the epidemiology of Mycobacterium bovis infection in the European badger (Meles meles) and other British mammals. Tuberculosis 81, 43–49.[CrossRef]
    [Google Scholar]
  4. Gibson, A. L., Hewinson, G., Goodchild, T., Watt, B., Story, A., Inwald, J. & Drobniewski, F. A. ( 2004; ). Molecular epidemiology of disease due to Mycobacterium bovis in humans in the United Kingdom. J Clin Microbiol 42, 431–434.[CrossRef]
    [Google Scholar]
  5. Goodacre, R., Timmins, E. M., Burton, R., Kaderbhai, N., Woodward, A. M., Kell, D. B. & Rooney, P. J. ( 1998; ). Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144, 1157–1170.[CrossRef]
    [Google Scholar]
  6. Goyal, M., Saunders, N. A., VanEmbden, J. D. A., Young, D. B. & Shaw, R. J. ( 1997; ). Differentiation of Mycobacterium tuberculosis isolates by spoligotyping and IS6110 restriction fragment length polymorphism. J Clin Microbiol 35, 647–651.
    [Google Scholar]
  7. Griffin, J. M., Williams, D. H., Kelly, G. E., Clegg, T. A., O'Boyle, I., Collins, J. D. & More, S. J. ( 2005; ). The impact of badger removal on the control of tuberculosis in cattle herds in Ireland. Prev Vet Med 67, 237–266.[CrossRef]
    [Google Scholar]
  8. Harrigan, G. G., LaPlante, R. H., Cosma, G. N., Cockerell, G., Goodacre, R., Maddox, J. F., Luyendyk, J. P., Ganey, P. E. & Roth, R. A. ( 2004; ). Applications of high-throughput Fourier-transform infrared spectroscopy in toxicology studies: contribution to a study on the development of an animal model for idiosyncratic toxicity. Toxicol Lett 146, 197–205.[CrossRef]
    [Google Scholar]
  9. Inwald, A., Hinds, J., Dale, J., Palmer, S., Butcher, P., Hewinson, R. G. & Gordon, S. V. ( 2002; ). Microarray-based comparative genomics: genome plasticity in Mycobacterium bovis. Comp Funct Genomics 3, 342–344.[CrossRef]
    [Google Scholar]
  10. Jarvis, R. M. & Goodacre, R. ( 2004; ). Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal Chem 76, 40–47.[CrossRef]
    [Google Scholar]
  11. Jolliffe, I. ( 1986; ). Principal Component Analysis. New York: Springer-Verlag.
  12. Kamerbeek, J., Schouls, L., Kolk, A. & 8 other authors ( 1997; ). Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35, 907–914.
    [Google Scholar]
  13. Lopez-Diez, E. C. & Goodacre, R. ( 2004; ). Characterization of microorganisms using UV resonance Raman spectroscopy and chemometrics. Anal Chem 76, 585–591.[CrossRef]
    [Google Scholar]
  14. MacFie, H. J. H., Gutteridge, C. S. & Norris, J. R. ( 1978; ). Use of canonical variates in differentiation of bacteria by pyrolysis gas-liquid chromatography. J Gen Microbiol 104, 67–74.[CrossRef]
    [Google Scholar]
  15. Manly, B. F. J. ( 1994; ). Multivariate Statistical Methods. London: Chapman & Hall.
  16. Maquelin, K., Kirschner, C., Choo-Smith, L. P. & 7 other authors ( 2003; ). Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J Clin Microbiol 41, 324–329.[CrossRef]
    [Google Scholar]
  17. Naumann, D., Helm, D. & Labischinski, H. ( 1991; ). Microbiological characterizations by FT-IR spectroscopy. Nature 351, 81–82.[CrossRef]
    [Google Scholar]
  18. Roring, S., Scott, A. N., Hewinson, R. G., Neill, S. D. & Skuce, R. A. ( 2004; ). Evaluation of variable number tandem repeat (VNTR) loci in molecular typing of Mycobacterium bovis isolates from Ireland. Vet Microbiol 101, 65–73.[CrossRef]
    [Google Scholar]
  19. Savitzky, A. & Golay, M. J. E. ( 1964; ). Smoothing and differentiation of data by simpli®ed least squares procedures. Anal Chem 36, 1627–1633.[CrossRef]
    [Google Scholar]
  20. Smith, N. H., Dale, J., Inwald, J., Palmer, S., Gordon, S. V., Hewinson, R. G. & Smith, J. M. ( 2003; ). The population structure of Mycobacterium bovis in Great Britain: clonal expansion. Proc Natl Acad Sci U S A 100, 15271–15275.[CrossRef]
    [Google Scholar]
  21. Timmins, E. M., Howell, S. A., Alsberg, B. K., Noble, W. C. & Goodacre, R. ( 1998; ). Rapid differentiation of closely related Candida species and strains by pyrolysis mass spectrometry and Fourier transform-infrared spectroscopy. J Clin Microbiol 36, 367–374.
    [Google Scholar]
  22. Winder, C. L., Carr, E., Goodacre, R. & Seviour, R. ( 2004; ). The rapid identification of Acinetobacter species using Fourier transform infrared spectroscopy. J Appl Microbiol 96, 328–339.[CrossRef]
    [Google Scholar]
  23. Windig, W., Haverkamp, J. & Kistemaker, P. G. ( 1983; ). Interpretation of sets of pyrolysis mass spectra by discriminant analysis and graphical rotation. Anal Chem 55, 81–88.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28986-0
Loading
/content/journal/micro/10.1099/mic.0.28986-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error