1887

Abstract

Rho-dependent transcription terminators participate in sophisticated genetic regulatory mechanisms, in both bacteria and phages; they occur in regulatory regions preceding the coding sequences of genes and within coding sequences, as well as at the end of transcriptional units, to prevent readthrough transcription. Most Rho-dependent terminators have been found in enteric bacteria, but they also occur in Gram-positive bacteria and may be widespread among bacteria. Rho-dependent termination requires both -acting elements, on the mRNA, and -acting factors. The only -acting element common to Rho-dependent terminators is richness in rC residues. Additional sequence elements have been observed at different Rho termination sites. These ‘auxiliary elements' may assist in the termination process; they differ among terminators, their occurrence possibly depending on the function and sequence context of the terminator. Specific nucleotides required for termination have also been identified at Rho sites. Rho is the main factor required for termination; it is a ring-shaped hexameric protein with ATPase and helicase activities. NusG, NusA and NusB are additional factors participating in the termination process. Rho-dependent termination occurs by binding of Rho to ribosome-free mRNA, C-rich sites being good candidates for binding. Rho's ATPase is activated by Rho–mRNA binding, and provides the energy for Rho translocation along the mRNA; translocation requires sliding of the message into the central hole of the hexamer. When a polymerase pause site is encountered, the actual termination occurs, and the transcript is released by Rho's helicase activity. Many aspects of this process are still being studied. The isolation of mutants suppressing termination, site-directed mutagenesis of -acting elements in Rho-dependent termination, and biochemistry, are and will be contributing to unravelling the still undefined aspects of the Rho termination machinery. Analysis of the more sophisticated regulatory mechanisms relying on Rho-dependent termination may be crucial in identifying new essential elements for termination.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28982-0
2006-09-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2515.html?itemId=/content/journal/micro/10.1099/mic.0.28982-0&mimeType=html&fmt=ahah

References

  1. Alifano, P., Ciampi, M. S., Nappo, A. G. & Carlomagno, M. S. ( 1988; ). In vivo analysis of the mechanism responsible for strong transcriptional polarity in a ‘sense’ mutant within an intercistronic region. Cell 55, 351–360.[CrossRef]
    [Google Scholar]
  2. Alifano, P., Rivellini, F., Limauro, D., Bruni, C. B. & Carlomagno, M. S. (1991; ). A consensus motif common to all Rho-dependent prokaryotic transcription terminators. Cell 64, 553–563.[CrossRef]
    [Google Scholar]
  3. Artsimovitch, I. & Landick, R. ( 2000; ). Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc Natl Acad Sci U S A 97, 7090–7095.[CrossRef]
    [Google Scholar]
  4. Bianco, R., Moramarco, G., Stella, A. & Ciampi, M. S. ( 1998; ). Relief of transcriptional polarity by a mutation that creates a promoter in the hisG gene of Salmonella typhimurium LT2. Mol Gen Genet 257, 529–533.
    [Google Scholar]
  5. Briani, F., Ghisotti, D. & Dehò, G. ( 2000; ). Antisense RNA-dependent transcription termination sites that modulate lysogenic development of satellite phage P4. Mol Microbiol 36, 1124–1134.[CrossRef]
    [Google Scholar]
  6. Bult, C. J., White, O., Olsen, G. J. & 20 other authors ( 1996; ). Complete genome sequence of the methanogenic archaeon Methanococcus jannaschii. Science 273, 1058–1072.[CrossRef]
    [Google Scholar]
  7. Burgess, B. R. & Richardson, J. P. ( 2001; ). RNA passes through the hole of the protein hexamer in the complex with the Escherichia coli Rho factor. J Biol Chem 276, 4182–4189.[CrossRef]
    [Google Scholar]
  8. Burns, C. M., Richardson, L. V. & Richardson, J. P. ( 1998; ). Combinatorial effects of NusA and NusG on transcription elongation and Rho-dependent termination in Escherichia coli. J Mol Biol 278, 307–316.[CrossRef]
    [Google Scholar]
  9. Burns, C. M., Nowatzke, W. L. & Richardson, J. P. ( 1999; ). Activation of Rho-dependent transcription termination by NusG. Dependence on terminator location and acceleration of RNA release. J Biol Chem 274, 5245–5251.[CrossRef]
    [Google Scholar]
  10. Burova, E., Hung, S. C., Sagitov, V., Stitt, B. L. & Gottesman, M. E. ( 1995; ). Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro. J Bacteriol 177, 1388–1392.
    [Google Scholar]
  11. Calva, E. & Burgess, R. R. ( 1980; ). Characterization of a Rho-dependent termination site within the cro gene of bacteriophage lambda. J Biol Chem 255, 11017–11022.
    [Google Scholar]
  12. Carlomagno, M. S. & Nappo, A. ( 2001; ). The antiterminator NusB enhances termination at a sub-optimal Rho Site. J Mol Biol 309, 19–28.[CrossRef]
    [Google Scholar]
  13. Carlomagno, M. S. & Nappo, A. ( 2003; ). NusA modulates intragenic termination by different pathways. Gene 308, 115–128.[CrossRef]
    [Google Scholar]
  14. Chen, C. Y. A. & Richardson, J. P. ( 1987; ). Sequence elements essential for r-dependent transcription termination at λ tR1. J Biol Chem 262, 11292–11299.
    [Google Scholar]
  15. Ciampi, M. S. & Roth, J. R. ( 1988; ). Polarity effects in the hisG gene of Salmonella require a site within the coding sequence. Genetics 118, 193–202.
    [Google Scholar]
  16. Ciampi, M. S., Schmid, M. B. & Roth, J. R. ( 1982; ). Transposon Tn10 provides a promoter for transcription of adjacent sequence. Proc Natl Acad Sci U S A 79, 5016–5017.[CrossRef]
    [Google Scholar]
  17. Ciampi, M. S., Alifano, P., Nappo, A. G., Bruni, C. B. & Carlomagno, M. S. ( 1989; ). Features of the Rho-dependent transcription termination polar element within the hisG cistron of Salmonella typhimurium. J Bacteriol 171, 4472–4478.
    [Google Scholar]
  18. Colonna, B. & Hofnung, M. ( 1981; ). rho mutations restore lamB expression in E. coli K12 strains with an inactive malB region. Mol Gen Genet 184, 479–483.[CrossRef]
    [Google Scholar]
  19. Das, A. ( 1992; ). How the phage lambda N gene product suppresses transcription termination: communication of RNA polymerase with regulatory proteins mediated by signals in nascent RNA. J Bacteriol 174, 6711–6716.
    [Google Scholar]
  20. Das, A., Court, D. & Adhya, S. ( 1976; ). Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor Rho. Proc Natl Acad Sci U S A 73, 1959–1963.[CrossRef]
    [Google Scholar]
  21. De Crombrugghe, B., Adhya, S., Gottesman, M. & Pastan, I. ( 1973; ). Effect of Rho on transcription of bacterial operons. Nature New Biol 241, 260–264.
    [Google Scholar]
  22. Delagoutte, E. & von Hippel, P. H. ( 2003; ). Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: integration of helicases into cellular processes. Q Rev Biophys 36, 1–69.[CrossRef]
    [Google Scholar]
  23. Ebina, Y. & Nakazawa, A. ( 1983; ). Cyclic AMP-dependent initiation and Rho-dependent termination of Colicin E1 gene transcription. J Biol Chem 258, 7072–7078.
    [Google Scholar]
  24. Faus, I. & Richardson, J. P. ( 1990; ). Structural and functional properties of the segments of lambda cro mRNA that interact with transcription termination factor Rho. J Mol Biol 212, 53–66.[CrossRef]
    [Google Scholar]
  25. Finger, L. R. & Richardson, J. P. ( 1982; ). Stabilization of the hexameric form of Escherichia coli protein Rho under ATP hydrolysis conditions. J Mol Biol 156, 203–219.[CrossRef]
    [Google Scholar]
  26. Forti, F., Polo, S., Lane, K. B., Six, E. W., Sironi, G., Dehò, G. & Ghisotti, D. ( 1999; ). Translation of two nested genes in bacteriophage P4 controls immunity-specific transcription termination. J Bacteriol 181, 5225–5233.
    [Google Scholar]
  27. Fraser, C. M., Gocayne, J. D., White, O. & 26 other authors ( 1995; ). The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403.[CrossRef]
    [Google Scholar]
  28. Friedman, D. I. & Olson, E. R. ( 1983; ). Evidence that a nucleotide sequence, ‘boxA’, is involved in the action of the NusA protein. Cell 34, 143–149.[CrossRef]
    [Google Scholar]
  29. Geiselmann, J., Yager, T. D., Gill, S. C., Calmettes, P. & von Hippel, P. H. ( 1992; ). Physical properties of the Escherichia coli transcription termination factor Rho. 1. Association states and geometry of the Rho hexamer. Biochemistry 31, 111–121.[CrossRef]
    [Google Scholar]
  30. Geiselmann, J., Wang, Y., Seifried, S. E. & von Hippel, P. H. ( 1993; ). A physical model for the translocation and helicase activities of Escherichia coli transcription termination protein Rho. Proc Natl Acad Sci U S A 90, 7754–7758.[CrossRef]
    [Google Scholar]
  31. Gogol, E. P., Seifried, S. E. & von Hippel, P. H. ( 1991; ). Structure and assembly of the Escherichia coli transcription termination factor Rho and its interactions with RNA. I. Cryoelectron microscopic studies. J Mol Biol 221, 1127–1138.[CrossRef]
    [Google Scholar]
  32. Gollnick, P. & Yanofsky, C. ( 1990; ). tRNA(Trp) translation of leader peptide codon 12 and other factors that regulate expression of the tryptophanase operon. J Bacteriol 172, 3100–3107.
    [Google Scholar]
  33. Gomelsky, M. & Kaplan, S. ( 1996; ). The Rhodobacter sphaeroides 2.4.1 rho gene: expression and genetic analysis of structure and function. J Bacteriol 178, 1946–1954.
    [Google Scholar]
  34. Gong, F. & Yanofsky, C. ( 2002; ). Analysis of tryptophanase operon expression in vitro: accumulation of TnaC-peptidyl-tRNA in a release factor 2-depleted S-30 extract prevents Rho factor action, simulating induction. J Biol Chem 277, 17095–17100.[CrossRef]
    [Google Scholar]
  35. Gong, F. & Yanofsky, C. ( 2003; ). Rho's role in transcription attenuation in the tna operon of E. coli. Methods Enzymol 371, 383–391.
    [Google Scholar]
  36. Govantes, F. & Santero, E. ( 1996; ). Transcription termination within the regulatory nifLA operon of Klebsiella pneumoniae. Mol Gen Genet 250, 447–454.
    [Google Scholar]
  37. Govantes, F., Andujar, E. & Santero, E. ( 1998; ). Mechanism of translational coupling in the nifLA operon of Klebsiella pneumoniae. EMBO J 17, 2368–2377.[CrossRef]
    [Google Scholar]
  38. Graham, J. E. ( 2004; ). Sequence-specific Rho-RNA interactions in transcription termination. Nucleic Acids Res 32, 3093–3100.[CrossRef]
    [Google Scholar]
  39. Graham, J. E. & Richardson, J. P. ( 1998; ). rut sites in the nascent transcript mediate Rho-dependent transcription termination in vivo. J Biol Chem 273, 20764–20769.[CrossRef]
    [Google Scholar]
  40. Guarente, L. ( 1979; ). Restoration of termination by RNA polymerase mutations is rho allele-specific. J Mol Biol 129, 295–304.[CrossRef]
    [Google Scholar]
  41. Guérin, M., Robichon, N., Geiselmann, J. & Rahmouni, A. R. ( 1998; ). A simple polypyrimidine repeat acts as an artificial Rho-dependent terminator in vivo and in vitro. Nucleic Acids Res 26, 4895–4900.[CrossRef]
    [Google Scholar]
  42. Hart, C. M. & Roberts, J. W. ( 1991; ). Rho-dependent transcription termination. Characterization of the requirement for cytidine in the nascent transcript. J Biol Chem 266, 24140–24148.
    [Google Scholar]
  43. Hart, C. M. & Roberts, J. W. ( 1994; ). Deletion analysis of the lambda tR1 termination region: effect of sequences near the transcript release sites and the minimum length of Rho-dependent transcripts. J Mol Biol 237, 255–265.[CrossRef]
    [Google Scholar]
  44. Heinrich, T., Condon, C., Pfeiffer, T. & Hartmann, R. K. ( 1995; ). Point mutations in the leader boxA of a plasmid-encoded Escherichia coli rrnB operon cause defective antitermination in vivo. J Bacteriol 177, 3793–3800.
    [Google Scholar]
  45. Horiguchi, T., Miwa, Y. & Shigesada, K. ( 1997; ). The quaternary geometry of transcription termination factor Rho: assignment by chemical cross-linking. J Mol Biol 269, 514–528.[CrossRef]
    [Google Scholar]
  46. Housley, P. R. & Whitfield, H. J. ( 1982; ). Transcription termination factor Rho from wild type and rho-111 of Salmonella typhimurium. J Biol Chem 257, 2569–2577.
    [Google Scholar]
  47. Ingham, C. J., Dennis, J. & Furneaux, P. A. ( 1999; ). Autogenous regulation of transcription termination factor Rho and the requirement for Nus factors in Bacillus subtilis. Mol Microbiol 31, 651–663.[CrossRef]
    [Google Scholar]
  48. Jeong, Y. J., Kim, D. E. & Patel, S. S. ( 2004; ). Nucleotide binding induces conformational changes in Escherichia coli transcription termination factor Rho. J Biol Chem 279, 18370–18376.[CrossRef]
    [Google Scholar]
  49. Kainz, M. & Gourse, R. L. ( 1998; ). The C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase is required for efficient Rho-dependent transcription termination. J Mol Biol 284, 1379–1390.[CrossRef]
    [Google Scholar]
  50. Konan, K. V. & Yanofsky, C. ( 2000; ). Rho-dependent transcription termination in the tna operon of Escherichia coli: roles of the boxA sequence and the rut site. J Bacteriol 182, 3981–3988.[CrossRef]
    [Google Scholar]
  51. Korn, L. J. & Yanofsky, C. ( 1976; ). Polarity suppressors increase expression of the wild-type tryptophan operon of Escherichia coli. J Mol Biol 103, 395–409.[CrossRef]
    [Google Scholar]
  52. Küpper, H., Sekiya, T., Rosenberg, M., Egan, J. & Landy, A. ( 1978; ). A Rho-dependent termination site in the gene coding for tyrosine tRNA su3 of Escherichia coli. Nature 272, 423–428.[CrossRef]
    [Google Scholar]
  53. La Farina, M., Izzo, V., Costa, M. A., Barbier, R., Duro, G., Vitale, M. & Mutolo, V. ( 1990; ). Read-through transcription occurs at the Rho-dependent signal F1 TIV in suppressor cells. Nucleic Acids Res 18, 865–870.[CrossRef]
    [Google Scholar]
  54. Lau, L. F., Roberts, J. W. & Wu, R. ( 1983; ). RNA polymerase pausing and transcript release at the λ tR1 terminator in vitro. J Biol Chem 258, 9391–9397.
    [Google Scholar]
  55. Lau, L. F., Roberts, J. W., Wu, R., Georges, F. & Narang, S. A. ( 1984; ). A potential stem-loop structure and the sequence CAAUCAA in the transcript are insufficient to signal Rho-dependent transcription termination at lambda tR1. Nucleic Acids Res 12, 1287–1299.[CrossRef]
    [Google Scholar]
  56. Li, J., Horwitz, R., McCracken, S. & Greenblatt, J. ( 1992; ). NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage λ. J Biol Chem 267, 6012–6019.
    [Google Scholar]
  57. Madden, K. A. & Landy, A. ( 1989; ). Rho-dependent transcription termination in the tyrT operon of Escherichia coli. Gene 76, 271–280.[CrossRef]
    [Google Scholar]
  58. Matsumoto, Y., Shigesada, K., Hirano, M. & Imai, M. ( 1986; ). Autogenous regulation of the gene for transcription termination factor Rho in Escherichia coli: localization and function of its attenuators. J Bacteriol 166, 945–958.
    [Google Scholar]
  59. McSwiggen, J. A., Bear, D. G. & von Hippel, P. H. ( 1988; ). Interactions of Escherichia coli transcription termination factor Rho with RNA. I. Binding stoichiometries and free energies. J Mol Biol 199, 609–622.[CrossRef]
    [Google Scholar]
  60. Miwa, Y., Horiguchi, T. & Shigesada, K. ( 1995; ). Structural and functional dissections of transcription termination factor Rho by random mutagenesis. J Mol Biol 254, 815–837.[CrossRef]
    [Google Scholar]
  61. Mogridge, J., Mah, T. F. & Greenblatt, J. ( 1998; ). Involvement of boxA nucleotides in the formation of a stable ribonucleoprotein complex containing the bacteriophage λ N protein. J Biol Chem 273, 4143–4148.[CrossRef]
    [Google Scholar]
  62. Moses, P. B. & Model, P. ( 1984; ). A Rho-dependent transcription termination signal in bacteriophage F1. J Mol Biol 172, 1–22.[CrossRef]
    [Google Scholar]
  63. Nehrke, K. W., Zalatan, F. & Platt, T. ( 1993; ). NusG alters Rho-dependent termination of transcription in vitro independent of kinetic coupling. Gene Expression 3, 119–133.
    [Google Scholar]
  64. Nowatzke, W. L., Keller, E., Koch, G. & Richardson, J. P. ( 1997; ). Transcription termination factor Rho is essential for M. luteus. J Bacteriol 179, 5238–5240.
    [Google Scholar]
  65. Opperman, T. & Richardson, J. P. ( 1994; ). Phylogenetic analysis of sequences from diverse bacteria with homology to the E. coli rho gene. J Bacteriol 176, 5033–5043.
    [Google Scholar]
  66. Platt, T. ( 1981; ). Termination of transcription and its regulation in the tryptophan operon of E. coli. Cell 24, 10–23.[CrossRef]
    [Google Scholar]
  67. Platt, T. ( 1986; ). Transcription termination and the regulation of gene expression. Annu Rev Biochem 55, 339–372.[CrossRef]
    [Google Scholar]
  68. Platt, T. & Richardson, J. P. ( 1992; ). Escherichia coli Rho factor: protein and enzyme of transcription termination. In Transcriptional Regulation, pp. 365–388. Edited by S. L. McKnight & K. R. Yamamoto. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  69. Quirk, P. G., Dunkley, E. A., Lee, P. & Krulwich, T. A. ( 1993; ). Identification of a putative B. subtilis rho gene. J Bacteriol 175, 647–654.
    [Google Scholar]
  70. Richardson, J. P. ( 1982; ). Activation of Rho protein ATPase requires simultaneous interaction at two kinds of nucleic acid-binding sites. J Biol Chem 257, 5760–5766.
    [Google Scholar]
  71. Richardson, J. P. ( 1991; ). Preventing the synthesis of unused transcripts by Rho factor. Cell 64, 1047–1049.[CrossRef]
    [Google Scholar]
  72. Richardson, J. P. ( 2002; ). Rho-dependent termination and ATPases in transcript termination. Biochim Biophys Acta 1577, 251–260.[CrossRef]
    [Google Scholar]
  73. Richardson, J. P. ( 2003; ). Loading Rho to terminate transcription. Cell 114, 157–159.[CrossRef]
    [Google Scholar]
  74. Richardson, J. P. & Greenblatt, J. L. ( 1996; ). Control of RNA chain elongation and termination. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 822–848. Edited by F. Neidhardt and others. Washington, DC: American Society for Microbiology.
  75. Richardson, L. V. & Richardson, J. P. ( 1996; ). Rho-dependent termination of transcription is governed primarily by the upstream Rho utilization (rut) sequences of a terminator. J Biol Chem 271, 21597–21603.[CrossRef]
    [Google Scholar]
  76. Rosenberg, M., Court, D., Shimatake, H., Brady, C. & Wulff, D. L. ( 1978; ). The relationship between function and DNA sequence in an intercistronic regulatory region in phage lambda. Nature 272, 414–423.[CrossRef]
    [Google Scholar]
  77. Rossi, J., Egan, J., Hudson, L. & Landy, A. ( 1981; ). The tyrT locus: termination and processing of a complex transcript. Cell 26, 305–314.[CrossRef]
    [Google Scholar]
  78. Ruteshouser, E. C. & Richardson, J. P. ( 1989; ). Identification and characterization of transcription termination sites in the Escherichia coli lacZ gene. J Mol Biol 208, 23–43.[CrossRef]
    [Google Scholar]
  79. Schmidt, M. C. & Chamberlin, M. J. ( 1984; ). Binding of Rho factor to E. coli RNA polymerase mediated by NusA protein. J Biol Chem 259, 15000–15002.
    [Google Scholar]
  80. Schneider, D., Gold, L. & Platt, T. ( 1993; ). Selective enrichment of RNA species for tight binding to Escherichia coli Rho factor. FASEB J 7, 201–207.
    [Google Scholar]
  81. Skordalakes, E. & Berger, J. M. ( 2003; ). Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell 114, 135–146.[CrossRef]
    [Google Scholar]
  82. Stanssens, P., Remaut, E. & Fiers, W. ( 1986; ). Inefficient translation initiation causes premature transcription termination in the lac Z gene. Cell 44, 711–718.[CrossRef]
    [Google Scholar]
  83. Steinmetz, E. J. & Platt, T. ( 1994; ). Evidence supporting a tethered tracking model for helicase activity of Escherichia coli Rho factor. Proc Natl Acad Sci U S A 91, 1401–1405.[CrossRef]
    [Google Scholar]
  84. Steinmetz, E. J., Brennen, C. A. & Platt, T. ( 1990; ). A short intervening structure can block Rho factor helicase action at a distance. J Biol Chem 265, 18408–18413.
    [Google Scholar]
  85. Stewart, V., Landick, R. & Yanofsky, C. ( 1986; ). Rho-dependent transcription termination in the tryptophanase operon leader region of Escherichia coli K-12. J Bacteriol 166, 217–223.
    [Google Scholar]
  86. Sullivan, S. L. & Gottesman, M. E. ( 1992; ). Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 68, 989–994.[CrossRef]
    [Google Scholar]
  87. Thirion, J. P. & Hofnung, M. ( 1972; ). On some genetic aspects of phage lambda resistance in Escherichia coli K12. Genetics 71, 207–216.
    [Google Scholar]
  88. Tsurushita, N., Shigesada, K. & Imai, M. ( 1989; ). Mutant Rho factors with increased transcription termination activities. I. Functional correlations of the primary and secondary polynucleotide binding sites with the efficiency and site-selectivity of Rho-dependent termination. J Mol Biol 210, 23–37.[CrossRef]
    [Google Scholar]
  89. Vogel, U. & Jensen, K. F. ( 1995; ). Effects of the antiterminator boxA on transcription elongation kinetics and ppGpp inhibition of transcription elongation in Escherichia coli. J Biol Chem 270, 18335–18340.[CrossRef]
    [Google Scholar]
  90. Vogel, U. & Jensen, K. F. ( 1997; ). NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA. J Biol Chem 272, 12265–12271.[CrossRef]
    [Google Scholar]
  91. Wang, A. & Roth, J. R. ( 1988; ). Activation of silent genes by transposons Tn5 and Tn10. Genetics 120, 875–885.
    [Google Scholar]
  92. Wang, Y. & von Hippel, P. H. ( 1993; ). Escherichia coli transcription termination factor Rho. I. ATPase activation by oligonucleotide cofactors. J Biol Chem 268, 13940–13946.
    [Google Scholar]
  93. Washburn, R. S., Marra, A., Bryant, A. P., Rosenberg, M. & Gentry, D. R. ( 2001; ). rho is not essential for viability or virulence in Staphylococcus aureus. Antimicrob Agents Chemother 45, 1099–1103.[CrossRef]
    [Google Scholar]
  94. Wei, R. R. & Richardson, J. P. ( 2001; ). Identification of an RNA-binding site in the ATP binding domain of Escherichia coli Rho by H2O2/Fe-EDTA cleavage protection studies. J Biol Chem 276, 28380–28387.[CrossRef]
    [Google Scholar]
  95. Wek, R. C., Sameshima, J. H. & Hatfield, G. W. ( 1987; ). Rho-dependent transcriptional polarity in the ilvGMEDA operon of wild-type Escherichia coli K-12. J Biol Chem 262, 15256–15261.
    [Google Scholar]
  96. Wu, A. M., Christie, G. E. & Platt, T. ( 1981; ). Tandem termination sites in the tryptophan operon of Escherichia coli. Proc Natl Acad Sci U S A 78, 2913–2917.[CrossRef]
    [Google Scholar]
  97. Yager, T. D. & von Hippel, P. H. ( 1987; ). Transcript elongation and termination in Escherichia coli. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1241–1275. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  98. Yakhnin, H., Babiarz, J. E., Yakhnin, A. V. & Babitzke, P. ( 2001; ). Expression of the Bacillus subtilis trpEDCFBA operon is influenced by translational coupling and Rho termination factor. J Bacteriol 183, 5918–5926.[CrossRef]
    [Google Scholar]
  99. Zalatan, F. & Platt, T. ( 1992; ). Effects of decreased cytosine content on Rho interaction with the Rho-dependent terminator trp t′ in Escherichia coli. J Biol Chem 267, 19082–19088.
    [Google Scholar]
  100. Zalatan, F., Galloway-Salvo, J. & Platt, T. ( 1993; ). Deletion analysis of the Escherichia coli Rho-dependent transcription terminator trp t′. J Biol Chem 268, 17051–17056.
    [Google Scholar]
  101. Zheng, C. H. & Friedman, D. I. ( 1994; ). Reduced Rho-dependent termination permits NusA independent growth of E. coli. Proc Natl Acad Sci U S A 91, 7543–7547.[CrossRef]
    [Google Scholar]
  102. Zhu, A. Q. & von Hippel, P. H. ( 1998a; ). Rho-dependent termination within the trp t′ terminator. I. Effects of Rho loading and template sequence. Biochemistry 37, 11202–11214.[CrossRef]
    [Google Scholar]
  103. Zhu, A. Q. & von Hippel, P. H. ( 1998b; ). Rho-dependent termination within the trp t′ terminator. II. Effects of kinetic competition and Rho processivity. Biochemistry 37, 11215–11222.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28982-0
Loading
/content/journal/micro/10.1099/mic.0.28982-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error