The H16 phasin PhaP1 is targeted to intracellular triacylglycerol inclusions in PD630 and mc155, and provides an anchor to target other proteins Free

Abstract

In , the H16 phasin PhaP1 represents the major phasin that binds to the surface of polyhydroxyalkanoate (PHA) inclusions. In this study, C-terminal fusions of PhaP1 with enhanced green fluorescent protein (eGFP) and with -galactosidase (LacZ) were expressed separately in the triacylglycerol (TAG)-accumulating actinomycetes PD630 and mc155, employing the acetamidase () promoter of the / shuttle plasmid pJAM2. PhaP1 and the PhaP1 fusion proteins were expressed stably in the recombinant strains. Western blot analysis of cell fractions of revealed that PhaP1 and the PhaP1–eGFP fusion protein were associated with the TAG inclusions, whereas no phasin or phasin fusion protein was detected in the soluble and membrane fractions. Additional electron microscopy/immunocytochemistry studies demonstrated that PhaP1 was mainly located on the surface of intracellular TAG inclusions; in addition, some PhaP1 also occurred at the plasma membrane. Fluorescence microscopic investigations of the subcellular distribution of the PhaP1–eGFP fusion protein and on isolated TAG inclusions revealed that the fusion protein was bound to TAG inclusions at all stages of their formation, and to some extent at the cytoplasmic membrane. The PhaP1–LacZ fusion protein also bound to the TAG inclusions, and could be separated together with the inclusions from crude extracts, thus demonstrating the immobilization of -galactosidase activity on the inclusions. This is believed to be the first report demonstrating the ability of PhaP1 to bind to lipid inclusions in addition to PHA inclusions. Furthermore, it was demonstrated that this non-specificity of PhaP1 can be utilized to anchor enzymically active fusion proteins to a matrix of bacterial TAG inclusions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28969-0
2006-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3271.html?itemId=/content/journal/micro/10.1099/mic.0.28969-0&mimeType=html&fmt=ahah

References

  1. Alvarez H. M, Steinbüchel A. 2002; Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376 [CrossRef]
    [Google Scholar]
  2. Alvarez H. M, Mayer F, Fabritius D, Steinbüchel A. 1996; Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus PD630. Arch Microbiol 165:377–386 [CrossRef]
    [Google Scholar]
  3. Banki M. R, Gerngross T. U, Wood D. W. 2005; Novel and economical purification of recombinant proteins: Intein-mediated protein purification using in vivo polyhydroxybutyrate (PHB) matrix association. Protein Sci 14:1387–1395
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  5. Darzins E. 1958 The Bacteriology of Tuberculosis Minneapolis, MN: University of Minnesota Press;
    [Google Scholar]
  6. de Koning G. J. M., Maxwell I. A. 1993; Biosynthesis of poly-(R)-3-hydroxyalkanoate: an emulsion polymerization. J Environ Degrad 1:223–226 [CrossRef]
    [Google Scholar]
  7. Gerngross T. U, Reilly P, Stubbe J, Sinskey A. J, Peoples O. P. 1993; Immunocytochemical analysis of poly- β -hydroxybutyrate (PHB) synthase in Alcaligenes eutrophus H16: localization of the synthase enzyme at the surface of PHB granules. J Bacteriol 175:5289–5293
    [Google Scholar]
  8. Hocking P. J, Marchessault R. H. 1994; Biopolyesters. In Chemistry and Technology for Biodegradable Polymers pp  48–96 Edited by Griffin G. London: Chapman and Hall;
    [Google Scholar]
  9. Jurassek L, Marchessault R. H. 2004; Polyhydroxyalkanoates (PHA) granule formation in Ralstonia eutropha cells: a computer simulation. Appl Microbiol Biotechnol 64:611–617 [CrossRef]
    [Google Scholar]
  10. Kalscheuer R, Steinbüchel A. 2003; A novel bifunctional wax ester synthase/acyl-CoA : diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 287:8075–8082
    [Google Scholar]
  11. Kalscheuer R, Arenskötter M, Steinbüchel A. 1999; Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly-3-hydroxyalkanoic acids. Appl Microbiol Biotechnol 52:508–515 [CrossRef]
    [Google Scholar]
  12. Kalscheuer R, Alvarez H. M, Wältermann M, Steinbüchel A. 2001; Preparative isolation of lipid inclusions from Rhodococcus opacus PD630 and Rhodococcus ruber and identification of granule-associated proteins. Arch Microbiol 177:20–28 [CrossRef]
    [Google Scholar]
  13. Mayer F, Hoppert M. 1997; Determination of the thickness of the boundary layer surrounding bacterial PHA inclusion bodies, and implication for models describing the molecular architecture of this layer. J Basic Microbiol 37:45–52 [CrossRef]
    [Google Scholar]
  14. Moldes C, Garcia P, Garcia J. L, Prieto M. A. 2004; In vivo immobilization of fusion proteins on bioplastics by the novel tag bioF. Appl Environ Microbiol 70:3205–3212 [CrossRef]
    [Google Scholar]
  15. Moloney M. M. 1997; Oil Body Proteins as Carriers of High-Value Peptides in Plants . US Patent 5650554
    [Google Scholar]
  16. Moloney M. M. 1998; Oleosins as carrier for foreign protein in plant seeds. In Engineering Crops for Industrial End Uses pp  47–54 Edited by Shewry P. R., Napier J. A., Davis P. London: Portland Press;
    [Google Scholar]
  17. Moloney M. M. 2002; Oleosin partitioning technology for production of recombinant proteins in oil seeds. In Handbook of Industrial Culture: Mammalian, Microbial, and Plant Cells pp  279–298 Edited by Vinci V. A., Parekh S. R. Totowa: Humana Press;
    [Google Scholar]
  18. Moloney M. M, Boothe J, van Rooijen G. J. 2005; Oil Bodies and Associated Proteins as Affinity Matrices . US Patent 6924363
    [Google Scholar]
  19. Murphy D. J. 2001; The biogenesis and functions of lipid bodies in animals, plants and microorganism. Prog Lipid Res 40:325–438 [CrossRef]
    [Google Scholar]
  20. Pieper-Fürst U, Madkour M. H, Mayer F, Steinbüchel A. 1994; Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber . J Bacteriol 176:4328–4337
    [Google Scholar]
  21. Pieper-Fürst U, Madkour M. H, Mayer F, Steinbüchel A. 1995; Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules. J Bacteriol 177:2513–2523
    [Google Scholar]
  22. Pötter M, Steinbüchel A. 2005; Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 6:552–560 [CrossRef]
    [Google Scholar]
  23. Pötter M, Madkur M. H, Mayer F, Steinbüchel A. 2002; Regulation of phasin expression and polyhydroxyalkanoate PHA granule formation in Ralstonia eutropha H16. Microbiology 148:2413–2426
    [Google Scholar]
  24. Pötter M, Müller H, Reinecke F, Wieczorek R, Fricke F, Bowien B, Friedrich B, Steinbüchel A. 2004; The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha . Microbiology 150:2301–2311 [CrossRef]
    [Google Scholar]
  25. Prieto M. A, Moldes T. C, Garcia G. P, Garcia L. J. L. 2004; Proteinas de Fusion Imvilizadas en Granulos de Polyhydroxyalkanoato de Cadena Media . ES Patent 200102240
    [Google Scholar]
  26. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Schlegel H. G, Kaltwasser H, Gottschalk G. 1961; Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Microbiol 38:209–222
    [Google Scholar]
  28. Simon R, Priefer U, Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1:784–791 [CrossRef]
    [Google Scholar]
  29. Snapper S. B, Melton R. E, Mustafa S, Kieser T, Jacobs W. R. 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol 4:1911–1919 [CrossRef]
    [Google Scholar]
  30. Steinbüchel A. 1991; Polyhydroxyalkanoic acids. In Biomaterials pp  123–213 Edited by Byrom D. London: Macmillan;
    [Google Scholar]
  31. Steinbüchel A., Valentin H. E. 1995; Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228 [CrossRef]
    [Google Scholar]
  32. Steinbüchel A, Aertz A, Babel W. 8 other authors 1995; Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can J Microbiol 41:94–105 [CrossRef]
    [Google Scholar]
  33. Stubbe J, Tian J. 2003; Polyhydroxyalkanoate (PHA) homeostasis: the role of the PHA synthase. Nat Prod Rep 20:445–457 [CrossRef]
    [Google Scholar]
  34. Tokuyasu K. T. 1980; Immunocytochemistry on ultrathin frozen sections. Histochem J 12:381–403 [CrossRef]
    [Google Scholar]
  35. Towbin H, Staehelin T, Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354 [CrossRef]
    [Google Scholar]
  36. Triccas J. A, Parish T, Britton W. J, Giquel B. 1998; An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis . FEMS Microbiol Lett 167:151–156 [CrossRef]
    [Google Scholar]
  37. Wältermann M, Steinbüchel A. 2005; Neutral lipid bodies in prokaryotes: recent insight into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619 [CrossRef]
    [Google Scholar]
  38. Wältermann M, Steinbüchel A. 2006; Wax ester and triacylglycerol inclusions. In Microbiology Monographs: Bacterial Inclusions vol. 1A Edited by Steinbüchel A., Shively J. Heidelberg: Springer; (in press)
    [Google Scholar]
  39. Wältermann M, Luftmann H, Baumeister D, Kalscheuer R, Steinbüchel A. 2000; Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiology 146:1143–1149
    [Google Scholar]
  40. Wältermann M, Hinz A, Robenek H. 8 other authors 2005; Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763
    [Google Scholar]
  41. Weber K, Osbourne M. 1969; The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412
    [Google Scholar]
  42. Wieczorek R, Pries A, Mayer F, Steinbüchel A. 1995; Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus . J Bacteriol 177:2425–2435
    [Google Scholar]
  43. York G. M, Stubbe J, Sinskey A. J. 2002; The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production. J Bacteriol 184:59–66 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28969-0
Loading
/content/journal/micro/10.1099/mic.0.28969-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed