1887

Abstract

encodes a large cell-surface glycoprotein that has adhesive properties. Immunostaining of cultured germ tubes showed that Als3p is distributed diffusely across the germ tube surface. Two-photon laser scanning microscopy of model catheter biofilms grown using a P-green fluorescent protein (GFP) reporter strain showed GFP production in hyphae throughout the biofilm structure while biofilms grown using a P-GFP reporter strain showed GFP in both hyphae and yeast-form cells. Model catheter biofilms formed by an Δ/Δ strain were weakened structurally and had approximately half the biomass of a wild-type biofilm. Reintegration of a wild-type allele restored biofilm mass and wild-type biofilm structure. Production of an Als3p–Ag1p fusion protein under control of the promoter in the Δ/Δ strain restored some of the wild-type biofilm structural features, but not the wild-type biofilm mass. Despite its inability to restore wild-type biofilm mass, the Als3p–Ag1p fusion protein mediated adhesion of the Δ/Δ strain to human buccal epithelial cells (BECs). The adhesive role of the Als3p N-terminal domain was further demonstrated by blocking adhesion of to BECs with immunoglobulin reactive against the Als3p N-terminal sequences. Together, these data suggest that portions of Als3p that are important for biofilm formation may be different from those that are important in BEC adhesion, and that Als3p may have multiple functions in biofilm formation. Overexpression of in an Δ/Δ strain that was deficient for filamentous growth and biofilm formation resulted in growth of elongated cells, even under culture conditions that do not favour filamentation. In the catheter biofilm model, the overexpression strain formed biofilm with a mass similar to that of a wild-type control. However, cells in the biofilm had yeast-like morphology. This result uncouples the effect of cellular morphology from biofilm formation and underscores the importance of Als3p in biofilm development on silicone elastomer surfaces.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28959-0
2006-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2287.html?itemId=/content/journal/micro/10.1099/mic.0.28959-0&mimeType=html&fmt=ahah

References

  1. Baillie G. S, Douglas L. J. 1999; Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol 48:671–679 [CrossRef]
    [Google Scholar]
  2. Cao Y. Y, Cao Y. B, Xu Z, Ying K, Li Y, Xie Y, Zhu Z. Y, Chen W. S, Jiang Y. Y. 2005; cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother 49:584–589 [CrossRef]
    [Google Scholar]
  3. Cappellaro C, Baldermann C, Rachel R, Tanner W. 1994; Mating type-specific cell-cell recognition of Saccharomyces cerevisiae : cell wall attachment and active sites of a- and alpha-agglutinin. EMBO J 13:4737–4744
    [Google Scholar]
  4. Chen M. H, Shen Z. M, Bobin S, Kahn P. C, Lipke P. N. 1995; Structure of Saccharomyces cerevisiae alpha-agglutinin. Evidence for a yeast cell wall protein with multiple immunoglobulin-like domains with atypical disulfides. J Biol Chem 270:26168–26177 [CrossRef]
    [Google Scholar]
  5. Costerton J. W, Cheng K. J, Geesey G. G, Ladd T. I, Nickel J. C, Dasgupta M, Marrie T. J. 1987; Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464 [CrossRef]
    [Google Scholar]
  6. Costerton J. W, Lewandowski Z, Caldwell D. E, Korber D. R, Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol 49:711–745 [CrossRef]
    [Google Scholar]
  7. de Nobel H, Lipke P. N, Kurjan J. 1996; Identification of a ligand-binding site in an immunoglobulin fold domain of the Saccharomyces cerevisiae adhesion protein α -agglutinin. Mol Biol Cell 7:143–153 [CrossRef]
    [Google Scholar]
  8. Donlan R. M, Costerton J. W. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193 [CrossRef]
    [Google Scholar]
  9. Douglas L. J. 2003; Candida biofilms and their role in infection. Trends Microbiol 11:30–36 [CrossRef]
    [Google Scholar]
  10. Fonzi W. A, Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  11. Fu Y, Ibrahim A. S, Sheppard D. C, Chen Y. C, French S. W, Cutler J. E, Filler S. G, Edwards J. E. Jr 2002; Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol 44:61–72 [CrossRef]
    [Google Scholar]
  12. Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo J.-M, d'Enfert C. 2004; Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3:536–545 [CrossRef]
    [Google Scholar]
  13. Ghannoum M. A, O'Toole G. A. 2004 Microbial Biofilms Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Gillum A. M, Tsay E. Y, Kirsch D. R. 1984; Isolation of the Candida albicans genes for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182 [CrossRef]
    [Google Scholar]
  15. Granger B. L, Flenniken M. L, Davis D. A, Mitchell A. P, Cutler J. E. 2005; Yeast wall protein 1 of Candida albicans . Microbiology 151:1631–1644 [CrossRef]
    [Google Scholar]
  16. Green C. B, Cheng G, Chandra J, Mukherjee P, Ghannoum M. A, Hoyer L. L. 2004; RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 150:267–275 [CrossRef]
    [Google Scholar]
  17. Green C. B, Zhao X, Hoyer L. L. 2005a; Use of green fluorescent protein and reverse transcription-PCR to monitor Candida albicans agglutinin-like sequence gene expression in a murine model of disseminated candidiasis. Infect Immun 73:1852–1855 [CrossRef]
    [Google Scholar]
  18. Green C. B, Zhao X, Yeater K. M, Hoyer L. L. 2005b; Construction and real-time RT-PCR validation of Candida albicans P ALS -GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology 151:1051–1060 [CrossRef]
    [Google Scholar]
  19. Hauser K, Tanner W. 1989; Purification of the inducible α -agglutinin of S. cerevisiae and molecular cloning of the gene. FEBS Lett 255:290–294 [CrossRef]
    [Google Scholar]
  20. Hoyer L. L. 2001; The ALS gene family of Candida albicans . Trends Microbiol 9:176–180 [CrossRef]
    [Google Scholar]
  21. Hoyer L. L, Hecht J. E. 2001; The ALS5 gene of Candida albicans and analysis of the Als5p N-terminal domain. Yeast 18:49–60 [CrossRef]
    [Google Scholar]
  22. Hoyer L. L, Payne T. L, Bell M, Myers A. M, Scherer S. 1998a; Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 33:451–459 [CrossRef]
    [Google Scholar]
  23. Hoyer L. L, Payne T. L, Hecht J. E. 1998b; Identification of Candida albicans ALS2 and ALS4 and localization of Als proteins to the fungal cell surface. J Bacteriol 180:5334–5343
    [Google Scholar]
  24. Kapteyn J. C, Hoyer L. L, Hecht J. E, Muller W. H, Andel A, Verkleij A. J, Makarow M, Van Den Ende H, Klis F. M. 2000; The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35:601–611
    [Google Scholar]
  25. Kelly M. T, MacCallum D. M, Clancy S. D, Odds F. C, Brown A. J. P, Butler G. 2004; The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol Microbiol 53:969–983 [CrossRef]
    [Google Scholar]
  26. Krueger K. E, Ghosh A. K, Krom B. P, Cihlar R. L. 2004; Deletion of the NOT4 gene impairs hyphal development and pathogenicity in Candida albicans . Microbiology 150:229–240 [CrossRef]
    [Google Scholar]
  27. Kuhn D. M, Chandra J, Mukherjee P. K, Ghannoum M. A. 2002; Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 70:878–888 [CrossRef]
    [Google Scholar]
  28. Kumamoto C. A. 2005; A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc Natl Acad Sci U S A 102:5576–5581 [CrossRef]
    [Google Scholar]
  29. Kumamoto C. A, Vinces M. D. 2005; Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol 7:1546–1554 [CrossRef]
    [Google Scholar]
  30. Leng P, Lee P. R, Wu H, Brown A. J. 2001; Efg1, a morphogenetic regulator in Candida albicans , is a sequence-specific DNA binding protein. J Bacteriol 183:4090–4093 [CrossRef]
    [Google Scholar]
  31. Lipke P. N, Wojciechowicz D, Kurjan J. 1989; AGα1 is the structural gene for the Saccharomyces cerevisiae α -agglutinin, a cell surface glycoprotein involved in cell-cell interaction during mating. Mol Cell Biol 9:3155–3165
    [Google Scholar]
  32. Liu H. 2002; Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans , a commensal and a pathogen. Int J Med Microbiol 292:299–311 [CrossRef]
    [Google Scholar]
  33. Lo H. J, Kohler J. R, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949 [CrossRef]
    [Google Scholar]
  34. Lopez-Ribot J. L. 2005; Candida albicans biofilms: more than filamentation. Curr Biol 15:R453–R455 [CrossRef]
    [Google Scholar]
  35. Loza L, Fu Y, Ibrahim A. S, Sheppard D. C, Filler S. G, Edwards J. E. Jr 2004; Functional analysis of the Candida albicans ALS1 gene product. Yeast 21:473–482 [CrossRef]
    [Google Scholar]
  36. Murad A. M, Lee P. R, Broadbent I. D, Barelle C. J, Brown A. J. 2000; CIp10, an efficient and convenient integrating vector for Candida albicans . Yeast 16:325–327 [CrossRef]
    [Google Scholar]
  37. Murillo L. M, Newport G, Lan C.-Y, Habelitz S, Dungan J, Agabian N. M. 2005; Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans . Eukaryot Cell 4:1562–1573 [CrossRef]
    [Google Scholar]
  38. Nobile C. J, Mitchell A. P. 2005; Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15:1150–1155 [CrossRef]
    [Google Scholar]
  39. Oh S.-H, Cheng G, Nuessen J. A, Jajko R, Yeater K. M, Zhao X, Pujol C, Soll D. R, Hoyer L. L. 2005; Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151:673–681 [CrossRef]
    [Google Scholar]
  40. Porta A, Ramon A. M, Fonzi W. A. 1999; PRR1 , a homolog of Aspergillus nidulans palF , control pH-dependent gene expression and filamentation in Candida albicans . J Bacteriol 181:7516–7523
    [Google Scholar]
  41. Ramage G, Saville S. P, Wickes B. L, Lopez-Ribot J. L. 2002a; Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68:5459–5463 [CrossRef]
    [Google Scholar]
  42. Ramage G, VandeWalle K, Lopez-Ribot J. L, Wickes B. L. 2002b; The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans . FEMS Microbiol Lett 214:95–100 [CrossRef]
    [Google Scholar]
  43. Richard M. L, Nobile C. J, Bruno V. M, Mitchell A. P. 2005; Candida albicans biofilm-defection mutants. Eukaryot Cell 4:1493–1502 [CrossRef]
    [Google Scholar]
  44. Rupp M. E. 2005; Microbial biofilms. N Engl J Med 352:846 [CrossRef]
    [Google Scholar]
  45. Schwank S, Rajacic Z, Zimmerli W, Blaser J. 1998; Impact of bacterial biofilm formation on in vitro and in vivo activities of antibiotics. Antimicrob Agents Chemother 42:895–898
    [Google Scholar]
  46. Sheppard D. C, Yeaman M. R, Welch W. H. 7 other authors 2004; Functional and structural diversity in the Als protein family of Candida albicans . J Biol Chem 279:30480–30489 [CrossRef]
    [Google Scholar]
  47. Stewart P. S, Mukherjee P. K, Ghannoum M. A. 2004; Biofilm antimicrobial resistance. In Microbial Biofilms pp  250–268 Edited by Ghannoum M. A., O'Toole G. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  48. Vediyappan G, Chaffin W. L. 2006; Non-glucan attached proteins of Candida albicans biofilm formed on various surfaces. Mycopathologia 161:3–10 [CrossRef]
    [Google Scholar]
  49. Wilson M. 1996; Susceptibility of oral bacterial biofilms to antimicrobial agents. J Med Microbiol 44:79–87 [CrossRef]
    [Google Scholar]
  50. Zhao H, Shen Z. M, Kahn P. C, Lipke P. N. 2001; Interaction of α -agglutinin and a-agglutinin, Saccharomyces cerevisiae sexual cell adhesion molecules. J Bacteriol 183:2874–2880 [CrossRef]
    [Google Scholar]
  51. Zhao X, Oh S.-H, Cheng G, Green C. B, Nuessen J. A, Yeater K, Leng R. P, Brown A. J. P, Hoyer L. L. 2004; ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparison between Als3p and Als1p. Microbiology 150:2415–2428 [CrossRef]
    [Google Scholar]
  52. Zhao X, Oh S.-H, Yeater K. M, Hoyer L. L. 2005; Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 151:1619–1630 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28959-0
Loading
/content/journal/micro/10.1099/mic.0.28959-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error