1887

Abstract

encodes a large cell-surface glycoprotein that has adhesive properties. Immunostaining of cultured germ tubes showed that Als3p is distributed diffusely across the germ tube surface. Two-photon laser scanning microscopy of model catheter biofilms grown using a P-green fluorescent protein (GFP) reporter strain showed GFP production in hyphae throughout the biofilm structure while biofilms grown using a P-GFP reporter strain showed GFP in both hyphae and yeast-form cells. Model catheter biofilms formed by an Δ/Δ strain were weakened structurally and had approximately half the biomass of a wild-type biofilm. Reintegration of a wild-type allele restored biofilm mass and wild-type biofilm structure. Production of an Als3p–Ag1p fusion protein under control of the promoter in the Δ/Δ strain restored some of the wild-type biofilm structural features, but not the wild-type biofilm mass. Despite its inability to restore wild-type biofilm mass, the Als3p–Ag1p fusion protein mediated adhesion of the Δ/Δ strain to human buccal epithelial cells (BECs). The adhesive role of the Als3p N-terminal domain was further demonstrated by blocking adhesion of to BECs with immunoglobulin reactive against the Als3p N-terminal sequences. Together, these data suggest that portions of Als3p that are important for biofilm formation may be different from those that are important in BEC adhesion, and that Als3p may have multiple functions in biofilm formation. Overexpression of in an Δ/Δ strain that was deficient for filamentous growth and biofilm formation resulted in growth of elongated cells, even under culture conditions that do not favour filamentation. In the catheter biofilm model, the overexpression strain formed biofilm with a mass similar to that of a wild-type control. However, cells in the biofilm had yeast-like morphology. This result uncouples the effect of cellular morphology from biofilm formation and underscores the importance of Als3p in biofilm development on silicone elastomer surfaces.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28959-0
2006-08-01
2020-08-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2287.html?itemId=/content/journal/micro/10.1099/mic.0.28959-0&mimeType=html&fmt=ahah

References

  1. Baillie G. S, Douglas L. J. 1999; Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol48:671–679[CrossRef]
    [Google Scholar]
  2. Cao Y. Y, Cao Y. B, Xu Z, Ying K, Li Y, Xie Y, Zhu Z. Y, Chen W. S, Jiang Y. Y. 2005; cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother49:584–589[CrossRef]
    [Google Scholar]
  3. Cappellaro C, Baldermann C, Rachel R, Tanner W. 1994; Mating type-specific cell-cell recognition of Saccharomyces cerevisiae : cell wall attachment and active sites of a- and alpha-agglutinin. EMBO J13:4737–4744
    [Google Scholar]
  4. Chen M. H, Shen Z. M, Bobin S, Kahn P. C, Lipke P. N. 1995; Structure of Saccharomyces cerevisiae alpha-agglutinin. Evidence for a yeast cell wall protein with multiple immunoglobulin-like domains with atypical disulfides. J Biol Chem270:26168–26177[CrossRef]
    [Google Scholar]
  5. Costerton J. W, Cheng K. J, Geesey G. G, Ladd T. I, Nickel J. C, Dasgupta M, Marrie T. J. 1987; Bacterial biofilms in nature and disease. Annu Rev Microbiol41:435–464[CrossRef]
    [Google Scholar]
  6. Costerton J. W, Lewandowski Z, Caldwell D. E, Korber D. R, Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol49:711–745[CrossRef]
    [Google Scholar]
  7. de Nobel H, Lipke P. N, Kurjan J. 1996; Identification of a ligand-binding site in an immunoglobulin fold domain of the Saccharomyces cerevisiae adhesion protein α -agglutinin. Mol Biol Cell7:143–153[CrossRef]
    [Google Scholar]
  8. Donlan R. M, Costerton J. W. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev15:167–193[CrossRef]
    [Google Scholar]
  9. Douglas L. J. 2003; Candida biofilms and their role in infection. Trends Microbiol11:30–36[CrossRef]
    [Google Scholar]
  10. Fonzi W. A, Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics134:717–728
    [Google Scholar]
  11. Fu Y, Ibrahim A. S, Sheppard D. C, Chen Y. C, French S. W, Cutler J. E, Filler S. G, Edwards J. E. Jr. 2002; Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol44:61–72[CrossRef]
    [Google Scholar]
  12. Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo J.-M, d'Enfert C. 2004; Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell3:536–545[CrossRef]
    [Google Scholar]
  13. Ghannoum M. A, O'Toole G. A. 2004; Microbial Biofilms Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Gillum A. M, Tsay E. Y, Kirsch D. R. 1984; Isolation of the Candida albicans genes for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet198:179–182[CrossRef]
    [Google Scholar]
  15. Granger B. L, Flenniken M. L, Davis D. A, Mitchell A. P, Cutler J. E. 2005; Yeast wall protein 1 of Candida albicans . Microbiology151:1631–1644[CrossRef]
    [Google Scholar]
  16. Green C. B, Cheng G, Chandra J, Mukherjee P, Ghannoum M. A, Hoyer L. L. 2004; RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology150:267–275[CrossRef]
    [Google Scholar]
  17. Green C. B, Zhao X, Hoyer L. L. 2005a; Use of green fluorescent protein and reverse transcription-PCR to monitor Candida albicans agglutinin-like sequence gene expression in a murine model of disseminated candidiasis. Infect Immun73:1852–1855[CrossRef]
    [Google Scholar]
  18. Green C. B, Zhao X, Yeater K. M, Hoyer L. L. 2005b; Construction and real-time RT-PCR validation of Candida albicans P ALS -GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology151:1051–1060[CrossRef]
    [Google Scholar]
  19. Hauser K, Tanner W. 1989; Purification of the inducible α -agglutinin of S. cerevisiae and molecular cloning of the gene. FEBS Lett255:290–294[CrossRef]
    [Google Scholar]
  20. Hoyer L. L. 2001; The ALS gene family of Candida albicans . Trends Microbiol9:176–180[CrossRef]
    [Google Scholar]
  21. Hoyer L. L, Hecht J. E. 2001; The ALS5 gene of Candida albicans and analysis of the Als5p N-terminal domain. Yeast18:49–60[CrossRef]
    [Google Scholar]
  22. Hoyer L. L, Payne T. L, Bell M, Myers A. M, Scherer S. 1998a; Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet33:451–459[CrossRef]
    [Google Scholar]
  23. Hoyer L. L, Payne T. L, Hecht J. E. 1998b; Identification of Candida albicans ALS2 and ALS4 and localization of Als proteins to the fungal cell surface. J Bacteriol180:5334–5343
    [Google Scholar]
  24. Kapteyn J. C, Hoyer L. L, Hecht J. E, Muller W. H, Andel A, Verkleij A. J, Makarow M, Van Den Ende H, Klis F. M. 2000; The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol35:601–611
    [Google Scholar]
  25. Kelly M. T, MacCallum D. M, Clancy S. D, Odds F. C, Brown A. J. P, Butler G. 2004; The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol Microbiol53:969–983[CrossRef]
    [Google Scholar]
  26. Krueger K. E, Ghosh A. K, Krom B. P, Cihlar R. L. 2004; Deletion of the NOT4 gene impairs hyphal development and pathogenicity in Candida albicans . Microbiology150:229–240[CrossRef]
    [Google Scholar]
  27. Kuhn D. M, Chandra J, Mukherjee P. K, Ghannoum M. A. 2002; Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun70:878–888[CrossRef]
    [Google Scholar]
  28. Kumamoto C. A. 2005; A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc Natl Acad Sci U S A102:5576–5581[CrossRef]
    [Google Scholar]
  29. Kumamoto C. A, Vinces M. D. 2005; Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol7:1546–1554[CrossRef]
    [Google Scholar]
  30. Leng P, Lee P. R, Wu H, Brown A. J. 2001; Efg1, a morphogenetic regulator in Candida albicans , is a sequence-specific DNA binding protein. J Bacteriol183:4090–4093[CrossRef]
    [Google Scholar]
  31. Lipke P. N, Wojciechowicz D, Kurjan J. 1989; AGα1 is the structural gene for the Saccharomyces cerevisiae α -agglutinin, a cell surface glycoprotein involved in cell-cell interaction during mating. Mol Cell Biol9:3155–3165
    [Google Scholar]
  32. Liu H. 2002; Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans , a commensal and a pathogen. Int J Med Microbiol292:299–311[CrossRef]
    [Google Scholar]
  33. Lo H. J, Kohler J. R, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell90:939–949[CrossRef]
    [Google Scholar]
  34. Lopez-Ribot J. L. 2005; Candida albicans biofilms: more than filamentation. Curr Biol15:R453–R455[CrossRef]
    [Google Scholar]
  35. Loza L, Fu Y, Ibrahim A. S, Sheppard D. C, Filler S. G, Edwards J. E. Jr. 2004; Functional analysis of the Candida albicans ALS1 gene product. Yeast21:473–482[CrossRef]
    [Google Scholar]
  36. Murad A. M, Lee P. R, Broadbent I. D, Barelle C. J, Brown A. J. 2000; CIp10, an efficient and convenient integrating vector for Candida albicans . Yeast16:325–327[CrossRef]
    [Google Scholar]
  37. Murillo L. M, Newport G, Lan C.-Y, Habelitz S, Dungan J, Agabian N. M. 2005; Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans . Eukaryot Cell4:1562–1573[CrossRef]
    [Google Scholar]
  38. Nobile C. J, Mitchell A. P. 2005; Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol15:1150–1155[CrossRef]
    [Google Scholar]
  39. Oh S.-H, Cheng G, Nuessen J. A, Jajko R, Yeater K. M, Zhao X, Pujol C, Soll D. R, Hoyer L. L. 2005; Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology151:673–681[CrossRef]
    [Google Scholar]
  40. Porta A, Ramon A. M, Fonzi W. A. 1999; PRR1 , a homolog of Aspergillus nidulans palF , control pH-dependent gene expression and filamentation in Candida albicans . J Bacteriol181:7516–7523
    [Google Scholar]
  41. Ramage G, Saville S. P, Wickes B. L, Lopez-Ribot J. L. 2002a; Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol68:5459–5463[CrossRef]
    [Google Scholar]
  42. Ramage G, VandeWalle K, Lopez-Ribot J. L, Wickes B. L. 2002b; The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans . FEMS Microbiol Lett214:95–100[CrossRef]
    [Google Scholar]
  43. Richard M. L, Nobile C. J, Bruno V. M, Mitchell A. P. 2005; Candida albicans biofilm-defection mutants. Eukaryot Cell4:1493–1502[CrossRef]
    [Google Scholar]
  44. Rupp M. E. 2005; Microbial biofilms. N Engl J Med352:846[CrossRef]
    [Google Scholar]
  45. Schwank S, Rajacic Z, Zimmerli W, Blaser J. 1998; Impact of bacterial biofilm formation on in vitro and in vivo activities of antibiotics. Antimicrob Agents Chemother42:895–898
    [Google Scholar]
  46. Sheppard D. C, Yeaman M. R, Welch W. H.7 other authors 2004; Functional and structural diversity in the Als protein family of Candida albicans . J Biol Chem279:30480–30489[CrossRef]
    [Google Scholar]
  47. Stewart P. S, Mukherjee P. K, Ghannoum M. A. 2004; Biofilm antimicrobial resistance. In Microbial Biofilms pp 250–268 Edited by Ghannoum M. A., O'Toole G. A.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  48. Vediyappan G, Chaffin W. L. 2006; Non-glucan attached proteins of Candida albicans biofilm formed on various surfaces. Mycopathologia161:3–10[CrossRef]
    [Google Scholar]
  49. Wilson M. 1996; Susceptibility of oral bacterial biofilms to antimicrobial agents. J Med Microbiol44:79–87[CrossRef]
    [Google Scholar]
  50. Zhao H, Shen Z. M, Kahn P. C, Lipke P. N. 2001; Interaction of α -agglutinin and a-agglutinin, Saccharomyces cerevisiae sexual cell adhesion molecules. J Bacteriol183:2874–2880[CrossRef]
    [Google Scholar]
  51. Zhao X, Oh S.-H, Cheng G, Green C. B, Nuessen J. A, Yeater K, Leng R. P, Brown A. J. P, Hoyer L. L. 2004; ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparison between Als3p and Als1p. Microbiology150:2415–2428[CrossRef]
    [Google Scholar]
  52. Zhao X, Oh S.-H, Yeater K. M, Hoyer L. L. 2005; Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology151:1619–1630[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28959-0
Loading
/content/journal/micro/10.1099/mic.0.28959-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error