1887

Abstract

The toxin–antitoxin operon of pSM19035 encodes three proteins: the global regulator, the labile antitoxin and the stable toxin. Accumulation of toxin free of antitoxin induced loss of cell proliferation in both and cells. Induction of a variant (Y83C) triggered stasis, in which cells were viable but unable to proliferate, without selectively affecting protein translation. In cells, accumulation of free toxin induced stasis, but this was fully reversed by expression of the antitoxin within a defined time window. The time window for reversion of toxicity by expression of antitoxin was dependent on the initial cellular level of . After 240 min of constitutive expression, or inducible expression of high levels of toxin for 30 min, expression of failed to reverse the toxic effect exerted by in cells growing in minimal medium. Under the latter conditions, inhibited replication, transcription and translation and finally induced death in a fraction (∼50 %) of the cell population. These results support the view that interacts with its specific target and reversibly inhibits cell proliferation, but accumulation of might lead to cell death due to pleiotropic effects.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28950-0
2006-08-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2365.html?itemId=/content/journal/micro/10.1099/mic.0.28950-0&mimeType=html&fmt=ahah

References

  1. Aizenman, E., Engelberg-Kulka, H. & Glaser, G. ( 1996; ). An Escherichia coli chromosomal ‘addiction module’ regulated by guanosine [corrected] 3′,5′-bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci U S A 93, 6059–6063.[CrossRef]
    [Google Scholar]
  2. Alonso, J. C., Tailor, R. H. & Luder, G. ( 1988; ). Characterization of recombination-deficient mutants of Bacillus subtilis. J Bacteriol 170, 3001–3007.
    [Google Scholar]
  3. Alonso, J. C., Balsa, D., Cherny, I. & other authors ( 2006; ). Bacterial Toxin-Antitoxin Systems as Targets for the Development of Novel Antibiotics. Washington, DC: American Society for Microbiology.
  4. Amitai, S., Yassin, Y. & Engelberg-Kulka, H. ( 2004; ). MazF-mediated cell death in Escherichia coli: a point of no return. J Bacteriol 186, 8295–8300.[CrossRef]
    [Google Scholar]
  5. Anantharaman, V. & Aravind, L. ( 2003; ). New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biol 4, R81.[CrossRef]
    [Google Scholar]
  6. Anjum, M. F., Lucchini, S., Thompson, A., Hinton, J. C. & Woodward, M. J. ( 2003; ). Comparative genomic indexing reveals the phylogenomics of Escherichia coli pathogens. Infect Immun 71, 4674–4683.[CrossRef]
    [Google Scholar]
  7. Bernard, P. & Couturier, M. ( 1992; ). Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol 226, 735–745.[CrossRef]
    [Google Scholar]
  8. Bernhardt, J., Buttner, K., Scharf, C. & Hecker, M. ( 1999; ). Dual channel imaging of two-dimensional electropherograms in Bacillus subtilis. Electrophoresis 20, 2225–2240.[CrossRef]
    [Google Scholar]
  9. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  10. Brantl, S., Behnke, D. & Alonso, J. C. ( 1990; ). Molecular analysis of the replication region of the conjugative Streptococcus agalactiae plasmid pIP501 in Bacillus subtilis. Comparison with plasmids pAM beta 1 and pSM19035. Nucleic Acids Res 18, 4783–4790.[CrossRef]
    [Google Scholar]
  11. Britton, R. A., Lin, D. C. & Grossman, A. D. ( 1998; ). Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev 12, 1254–1259.[CrossRef]
    [Google Scholar]
  12. Camacho, A. G., Misselwitz, R., Behlke, J. & 7 other authors ( 2002; ). In vitro and in vivo stability of the ε 2 ζ 2 protein complex of the broad host-range Streptococcus pyogenes pSM19035 addiction system. Biol Chem 383, 1701–1713.
    [Google Scholar]
  13. Carrasco, B., Cozar, M. C., Lurz, R., Alonso, J. C. & Ayora, S. ( 2004; ). Genetic recombination in Bacillus subtilis 168: contribution of Holliday junction processing functions in chromosome segregation. J Bacteriol 186, 5557–5566.[CrossRef]
    [Google Scholar]
  14. Ceglowski, P., Boitsov, A., Chai, S. & Alonso, J. C. ( 1993a; ). Analysis of the stabilization system of pSM19035-derived plasmid pBT233 in Bacillus subtilis. Gene 136, 1–12.[CrossRef]
    [Google Scholar]
  15. Ceglowski, P., Boitsov, A., Karamyan, N., Chai, S. & Alonso, J. C. ( 1993b; ). Characterization of the effectors required for stable inheritance of Streptococcus pyogenes pSM19035-derived plasmids in Bacillus subtilis. Mol Gen Genet 241, 579–585.
    [Google Scholar]
  16. Christensen, S. K., Pedersen, K., Hansen, F. G. & Gerdes, K. ( 2003; ). Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J Mol Biol 332, 809–819.[CrossRef]
    [Google Scholar]
  17. de la Hoz, A. B., Ayora, S., Sitkiewicz, I., Fernandez, S., Pankiewicz, R., Alonso, J. C. & Ceglowski, P. ( 2000; ). Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. Proc Natl Acad Sci U S A 97, 728–733.[CrossRef]
    [Google Scholar]
  18. de la Hoz, A. B., Pratto, F., Misselwitz, R., Speck, C., Weihofen, W., Welfle, K., Saenger, W., Welfle, H. & Alonso, J. C. ( 2004; ). Recognition of DNA by omega protein from the broad-host range Streptococcus pyogenes plasmid pSM19035: analysis of binding to operator DNA with one to four heptad repeats. Nucleic Acids Res 32, 3136–3147.[CrossRef]
    [Google Scholar]
  19. Diederich, L., Roth, A. & Messer, W. ( 1994; ). A versatile plasmid vector system for the regulated expression of genes in Escherichia coli. Biotechniques 16, 916–923.
    [Google Scholar]
  20. Engelberg-Kulka, H. & Glaser, G. ( 1999; ). Addiction modules and programmed cell death and antideath in bacterial cultures. Annu Rev Microbiol 53, 43–70.[CrossRef]
    [Google Scholar]
  21. Engelberg-Kulka, H., Sat, B., Reches, M., Amitai, S. & Hazan, R. ( 2004; ). Bacterial programmed cell death systems as targets for antibiotics. Trends Microbiol 12, 66–71.[CrossRef]
    [Google Scholar]
  22. Eymann, C., Dreisbach, A., Albrecht, D. & 10 other authors ( 2004; ). A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4, 2849–2876.[CrossRef]
    [Google Scholar]
  23. Gerdes, K. ( 2000; ). Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J Bacteriol 182, 561–572.[CrossRef]
    [Google Scholar]
  24. Gerdes, K., Gultyaev, A. P., Franch, T., Pedersen, K. & Mikkelsen, N. D. ( 1997; ). Antisense RNA-regulated programmed cell death. Annu Rev Genet 31, 1–31.[CrossRef]
    [Google Scholar]
  25. Gerdes, K., Christensen, S. K. & Lobner-Olesen, A. ( 2005; ). Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 3, 371–382.[CrossRef]
    [Google Scholar]
  26. Godoy, V. G., Jarosz, D. F., Walker, F. L., Simmons, L. A. & Walker, G. C. ( 2006; ). Y-family DNA polymerases respond to DNA damage-independent inhibition of replication fork progression. EMBO J 25, 868–879.[CrossRef]
    [Google Scholar]
  27. Hayes, F. ( 2003; ). Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301, 1496–1499.[CrossRef]
    [Google Scholar]
  28. Hazan, R., Sat, B. & Engelberg-Kulka, H. ( 2004; ). Escherichia coli mazEF-mediated cell death is triggered by various stressful conditions. J Bacteriol 186, 3663–3669.[CrossRef]
    [Google Scholar]
  29. Hengge-Aronis, R. ( 1993; ). Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72, 165–168.[CrossRef]
    [Google Scholar]
  30. Lemon, K. P. & Grossman, A. D. ( 1998; ). Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282, 1516–1519.[CrossRef]
    [Google Scholar]
  31. Lemonnier, M., Bouet, J. Y., Libante, V. & Lane, D. ( 2000; ). Disruption of the F plasmid partition complex in vivo by partition protein SopA. Mol Microbiol 38, 493–505.[CrossRef]
    [Google Scholar]
  32. Martinez-Antonio, A. & Collado-Vides, J. ( 2003; ). Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6, 482–489.[CrossRef]
    [Google Scholar]
  33. Matin, A. ( 1991; ). The molecular basis of carbon-starvation-induced general resistance in Escherichia coli. Mol Microbiol 5, 3–10.[CrossRef]
    [Google Scholar]
  34. Meinhart, A., Alonso, J. C., Strater, N. & Saenger, W. ( 2003; ). Crystal structure of the plasmid maintenance system ε/ζ: functional mechanism of toxin zeta and inactivation by ε 2 ζ 2 complex formation. Proc Natl Acad Sci U S A 100, 1661–1666.[CrossRef]
    [Google Scholar]
  35. Miki, T., Chang, Z. T. & Horiuchi, T. ( 1984; ). Control of cell division by sex factor F in Escherichia coli. II. Identification of genes for inhibitor protein and trigger protein on the 42.84-43.6 F segment. J Mol Biol 174, 627–646.[CrossRef]
    [Google Scholar]
  36. Misselwitz, R., de la Hoz, A. B., Ayora, S., Welfle, K., Behlke, J., Murayama, K., Saenger, W., Alonso, J. C. & Welfle, H. ( 2001; ). Stability and DNA-binding properties of the omega regulator protein from the broad-host range Streptococcus pyogenes plasmid pSM19035. FEBS Lett 505, 436–440.[CrossRef]
    [Google Scholar]
  37. Mohedano, M. L., Overweg, K., de la Fuente, A., Reuter, M., Altabe, S., Mulholland, F., de Mendoza, D., Lopez, P. & Wells, J. M. ( 2005; ). Evidence that the essential response regulator YycF in Streptococcus pneumoniae modulates expression of fatty acid biosynthesis genes and alters membrane composition. J Bacteriol 187, 2357–2367.[CrossRef]
    [Google Scholar]
  38. Muñoz-Gomez, A. J., Lemonnier, M., Santos-Sierra, S., Berzal-Herranz, A. & Diaz-Orejas, R. ( 2005; ). RNase/Anti-RNase Activities of the bacterial parD toxin-antitoxin system. J Bacteriol 187, 3151–3157.[CrossRef]
    [Google Scholar]
  39. Murayama, K., Orth, P., de la Hoz, A. B., Alonso, J. C. & Saenger, W. ( 2001; ). Crystal structure of omega transcriptional repressor encoded by Streptococcus pyogenes plasmid pSM19035 at 1.5 Å resolution. J Mol Biol 314, 789–796.[CrossRef]
    [Google Scholar]
  40. Nowakowska, B., Kern-Zdanowicz, I., Zielenkiewicz, U. & Ceglowski, P. ( 2005; ). Characterization of Bacillus subtilis clones surviving overproduction of Zeta, a pSM19035 plasmid-encoded toxin. Acta Biochim Pol 52, 99–107.
    [Google Scholar]
  41. Nystrom, T. ( 1999; ). Starvation, cessation of growth and bacterial aging. Curr Opin Microbiol 2, 214–219.[CrossRef]
    [Google Scholar]
  42. Nystrom, T. ( 2003; ). Nonculturable bacteria: programmed survival forms or cells at death's door? Bioessays 25, 204–211.[CrossRef]
    [Google Scholar]
  43. Pandey, D. P. & Gerdes, K. ( 2005; ). Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33, 966–976.[CrossRef]
    [Google Scholar]
  44. Pearson, B. M., Pin, C., Wright, J., I'Anson, K., Humphrey, T. & Wells, J. M. ( 2003; ). Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Lett 554, 224–230.[CrossRef]
    [Google Scholar]
  45. Pedersen, K., Christensen, S. K. & Gerdes, K. ( 2002; ). Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Mol Microbiol 45, 501–510.[CrossRef]
    [Google Scholar]
  46. Pedersen, K., Zavialov, A. V., Pavlov, M. Y., Elf, J., Gerdes, K. & Ehrenberg, M. ( 2003; ). The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112, 131–140.[CrossRef]
    [Google Scholar]
  47. Sanchez, H., Kidane, D., Reed, P., Curtis, F. A., Cozar, M. C., Graumann, P. L., Sharples, G. J. & Alonso, J. C. ( 2005; ). The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis. Genetics 171, 873–883.[CrossRef]
    [Google Scholar]
  48. Sat, B., Reches, M. & Engelberg-Kulka, H. ( 2003; ). The Escherichia coli mazEF suicide module mediates thymineless death. J Bacteriol 185, 1803–1807.[CrossRef]
    [Google Scholar]
  49. Sitkiewicz, U., Zielenkiewicz, R., Pankiewicz, R., Kern, I., Alonso, J. C. & Ceglowski, P. ( 1999; ). Characterization of the region involved in a better-than-random segregation of streptococcal plasmid pSM19035. Plasmid 41, 161–162.
    [Google Scholar]
  50. Stulke, J., Hanschke, R. & Hecker, M. ( 1993; ). Temporal activation of beta-glucanase synthesis in Bacillus subtilis is mediated by the GTP pool. J Gen Microbiol 139, 2041–2045.[CrossRef]
    [Google Scholar]
  51. Weihofen, W. A., Cicek, A., Pratto, F., Alonso, J. C. & Saenger, W. ( 2006; ). Structures of ω 2 repressors bound to direct and inverted DNA repeats explain modulation of transcription. Nucleic Acids Res 34, 1450–1458.[CrossRef]
    [Google Scholar]
  52. Welfle, K., Pratto, F., Misselwitz, R., Behlke, J., Alonso, J. C. & Welfle, H. ( 2005; ). Role of the N-terminal region and of β-sheet residue Thr29 on the activity of the ω 2 global regulator from the broad-host range Streptococcus pyogenes plasmid pSM19035. Biol Chem 386, 881–894.
    [Google Scholar]
  53. Yasbin, R. E., Fields, P. I. & Andersen, B. J. ( 1980; ). Properties of Bacillus subtilis 168 derivatives freed of their natural prophages. Gene 12, 155–159.[CrossRef]
    [Google Scholar]
  54. Zhang, Y., Zhang, J., Hoeflich, K. P., Ikura, M., Qing, G. & Inouye, M. ( 2003; ). MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol Cell 12, 913–923.[CrossRef]
    [Google Scholar]
  55. Zielenkiewicz, U. & Ceglowski, P. ( 2001; ). Mechanisms of plasmid stable maintenance with special focus on plasmid addiction systems. Acta Biochim Pol 48, 1003–1023.
    [Google Scholar]
  56. Zielenkiewicz, U. & Ceglowski, P. ( 2005; ). The toxin-antitoxin system of the streptococcal plasmid pSM19035. J Bacteriol 187, 6094–6105.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28950-0
Loading
/content/journal/micro/10.1099/mic.0.28950-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 2365 - 2379

Supplementary data showing the effect of ζ induction on gene expression of specific stress pathways [ PDF] (26 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error