1887

Abstract

Adenylyltransferase, GlnE, has a predicted role in controlling the enzymic activity of glutamine synthetase, the key enzyme in ammonia assimilation. It was previously demonstrated that is an essential gene in . is located downstream of , one of four glutamine synthetases. The expression of GlnE under various conditions was determined. Although a co-transcript of and was detectable, the major transcript was monocistronic. A transcriptional start site immediately upstream of was identified and it was shown by site-directed mutagenesis that the predicted −10 region is a functional promoter. It was demonstrated that in a background P was up-regulated in ammonia- or glutamine-containing media.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28942-0
2006-09-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2727.html?itemId=/content/journal/micro/10.1099/mic.0.28942-0&mimeType=html&fmt=ahah

References

  1. Agarwal, N. & Tyagi, A. K. ( 2003; ). Role of 5′-TGN-3′ motif in the interaction of mycobacterial RNA polymerase with a promoter of ‘extended −10’ class. FEMS Microbiol Lett 225, 75–83.[CrossRef]
    [Google Scholar]
  2. Bashyam, M. D. & Tyagi, A. K. ( 1998; ). Identification and analysis of “extended −10” promoters from mycobacteria. J Bacteriol 180, 2568–2573.
    [Google Scholar]
  3. Betts, J. C., Lukey, P. T., Robb, L. C., McAdam, R. A. & Duncan, K. ( 2002; ). Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43, 717–731.[CrossRef]
    [Google Scholar]
  4. Cole, S. T., Brosch, R., Parkhill, J. & 39 other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.[CrossRef]
    [Google Scholar]
  5. Collins, D. M., Wilson, T., Campbell, S., Buddle, B. M., Wards, B. J., Hotter, G. & de Lisle, G. W. ( 2002; ). Production of avirulent mutants of Mycobacterium bovis with vaccine properties by the use of illegitimate recombination and screening of stationary-phase cultures. Microbiology 148, 3019–3027.
    [Google Scholar]
  6. Dussurget, O., Timm, J., Gomez, M., Gold, B., Yu, S. W., Sabol, S. Z., Holmes, R. K., Jacobs, W. R. & Smith, I. ( 1999; ). Transcriptional control of the iron-responsive fxbA gene by the mycobacterial regulator IdeR. J Bacteriol 181, 3402–3408.
    [Google Scholar]
  7. Fink, D., Falke, D., Wohlleben, W. & Engels, A. ( 1999; ). Nitrogen metabolism in Streptomyces coelicolor A3(2): modification of glutamine synthetase I by an adenylyltransferase. Microbiology 145, 2313–2322.
    [Google Scholar]
  8. Fink, D., Weissschuh, N., Reuther, J., Wohlleben, W. & Engels, A. ( 2002; ). Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 46, 331–347.[CrossRef]
    [Google Scholar]
  9. Harth, G. & Horwitz, M. A. ( 1999; ). An inhibitor of exported Mycobacterium tuberculosis glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets. J Exp Med 189, 1425–1435.[CrossRef]
    [Google Scholar]
  10. Harth, G., Clemens, D. L. & Horwitz, M. A. ( 1994; ). Glutamine synthetase of Mycobacterium tuberculosis: extracellular release and characterization of its enzymatic activity. Proc Natl Acad Sci U S A 91, 9342–9346.[CrossRef]
    [Google Scholar]
  11. Harth, G., Zamecnik, P. C., Tang, J. Y., Tabatadze, D. & Horwitz, M. A. ( 2000; ). Treatment of Mycobacterium tuberculosis with antisense oligonucleotides to glutamine synthetase mRNA inhibits glutamine synthetase activity, formation of the poly-l-glutamate/glutamine cell wall structure, and bacterial replication. Proc Natl Acad Sci U S A 97, 418–423.[CrossRef]
    [Google Scholar]
  12. Harth, G., Maslesa-Galic, S., Tullius, M. V. & Horwitz, M. A. ( 2005; ). All four Mycobacterium tuberculosis glnA genes encode glutamine synthetase activities but only GlnA1 is abundantly expressed and essential for bacterial homeostasis. Mol Microbiol 58, 1157–1172.[CrossRef]
    [Google Scholar]
  13. Jakoby, M., Nolden, L., Meier-Wagner, J., Kramer, R. & Burkovski, A. ( 2000; ). AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol 37, 964–977.[CrossRef]
    [Google Scholar]
  14. Kamalakannan, V., Ramachandran, G., Narayanan, S., Vasan, S. K. & Narayanan, P. R. ( 2002; ). Identification of a novel mycobacterial transcriptional regulator and its involvement in growth rate dependence and stringent control. FEMS Microbiol Lett 209, 261–266.[CrossRef]
    [Google Scholar]
  15. Manganelli, R., Dubnau, E., Tyagi, S., Kramer, F. R. & Smith, I. ( 1999; ). Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol 31, 715–724.[CrossRef]
    [Google Scholar]
  16. Merrick, M. J. & Edwards, R. A. ( 1995; ). Nitrogen control in bacteria. Microbiol Rev 59, 604–622.
    [Google Scholar]
  17. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  18. Nolden, L., Farwick, M., Kramer, R. & Burkovski, A. ( 2001; ). Glutamine synthetases of Corynebacterium glutamicum: transcriptional control and regulation of activity. FEMS Microbiol Lett 201, 91–98.[CrossRef]
    [Google Scholar]
  19. Parish, T. & Stoker, N. G. ( 2000; ). glnE is an essential gene in Mycobacterium tuberculosis. J Bacteriol 182, 5715–5720.[CrossRef]
    [Google Scholar]
  20. Parish, T., Lewis, J. & Stoker, N. G. ( 2001; ). Use of the mycobacteriophage L5 excisionase in Mycobacterium tuberculosis to demonstrate gene essentiality. Tuberculosis 81, 359–364.[CrossRef]
    [Google Scholar]
  21. Reitzer, L. J. & Magasanik, B. ( 1987; ). Ammonia assimilation and the biosynthesis of glutamine, glutamate, asparagine, l-alanine and d-alanine. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Edited by F. C. Neidhart and others. Washington, DC: American Society for Microbiology.
  22. Timm, J., Perilli, M. G., Duez, C. & 7 other authors ( 1994; ). Transcription and expression analysis, using lacZ and phoA gene fusions, of Mycobacterium fortuitum beta-lactamase genes cloned from a natural isolate and a high-level beta-lactamase producer. Mol Microbiol 12, 491–504.[CrossRef]
    [Google Scholar]
  23. Tullius, M. V., Harth, G. & Horwitz, M. A. ( 2001; ). High extracellular levels of Mycobacterium tuberculosis glutamine synthetase and superoxide dismutase in actively growing cultures are due to high expression and extracellular stability rather than to a protein-specific export mechanism. Infect Immun 69, 6348–6363.[CrossRef]
    [Google Scholar]
  24. Tullius, M. V., Harth, G. & Horwitz, M. A. ( 2003; ). Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and guinea pigs. Infect Immun 71, 3927–3936.[CrossRef]
    [Google Scholar]
  25. Wernisch, L., Kendall, S. L., Soneji, S., Wietzorrek, A., Parish, T., Hinds, J., Butcher, P. D. & Stoker, N. G. ( 2003; ). Analysis of whole-genome microarray replicates using mixed models. Bioinformatics 19, 53–61.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28942-0
Loading
/content/journal/micro/10.1099/mic.0.28942-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error