1887

Abstract

The aminocoumarin antibiotic clorobiocin contains an unusual branched deoxysugar with a 5,5--dimethyl structure. Inactivation of the putative -methyltransferase gene was carried out, which led to the loss of the axial methyl group at C-5 of this deoxysugar moiety. This result establishes the function of , and at the same time it proves that the biosynthesis of the deoxysugar moiety of clorobiocin proceeds via a 3,5-epimerization of the dTDP-4-keto-6-deoxyglucose intermediate. The inactivation was carried out on a cosmid which contained the entire clorobiocin biosynthetic gene cluster. Expression of the modified cluster in a heterologous host led to the formation of desmethyl-clorobiocin and a structural isomer thereof. Both compounds were isolated on a preparative scale, their structures were elucidated by H-NMR and mass spectroscopy and their antibacterial activity was assayed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28931-0
2006-08-01
2019-11-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2433.html?itemId=/content/journal/micro/10.1099/mic.0.28931-0&mimeType=html&fmt=ahah

References

  1. Albermann, C., Soriano, A., Jiang, J., Vollmer, H., Biggins, J. B., Barton, W. A., Lesniak, J., Nikolov, D. B. & Thorson, J. S. ( 2003; ). Substrate specificity of NovM: implications for novobiocin biosynthesis and glycorandomization. Org Lett 5, 933–936.[CrossRef]
    [Google Scholar]
  2. Birch, A. J., Cameron, D. W., Holloway, P. W. & Rickards, R. W. ( 1960; ). Further examples of biological C-methylation. Novobiocin and actinomycin. Tetrahedron Lett 26–31.
    [Google Scholar]
  3. Birch, A. J., Holloway, R. W. & Rickards, R. W. ( 1962; ). Biosynthesis of noviose, a branched-chain monosaccharide. Biochim Biophys Acta 57, 143–145.[CrossRef]
    [Google Scholar]
  4. Chen, H., Zhao, Z., Hallis, T. M., Guo, Z. & Liu, H.-W. ( 2001; ). Insights into the branched-chain formation of mycarose: methylation catalyzed by an (S)-adenosylmethionine-dependent methyltransferase. Angew Chem Int Ed 40, 607–610.[CrossRef]
    [Google Scholar]
  5. Doumith, M., Weingarten, P., Wehmeier, U. F., Salah-Bey, K., Benhamou, B., Capdevila, C., Michel, J.-M., Piepersberg, W. & Raynal, M.-C. ( 2000; ). Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea. Mol Gen Genet 264, 477–485.[CrossRef]
    [Google Scholar]
  6. Eustáquio, A. S., Gust, B., Luft, T., Li, S.-M., Chater, K. F. & Heide, L. ( 2003; ). Clorobiocin biosynthesis in Streptomyces. Identification of the halogenase and generation of structural analogs. Chem Biol 10, 279–288.[CrossRef]
    [Google Scholar]
  7. Eustáquio, A. S., Gust, B., Li, S.-M., Pelzer, S., Wohlleben, W., Chater, K. F. & Heide, L. ( 2004; ). Production of 8′-halogenated and 8′-unsubstituted novobiocin derivatives in genetically engineered Streptomyces coelicolor strains. Chem Biol 11, 1561–1572.[CrossRef]
    [Google Scholar]
  8. Eustáquio, A. S., Gust, B., Galm, U., Li, S.-M., Chater, K. F. & Heide, L. ( 2005a; ). Heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters. Appl Environ Microbiol 71, 2452–2459.[CrossRef]
    [Google Scholar]
  9. Eustáquio, A. S., Li, S.-M. & Heide, L. ( 2005b; ). NovG, a DNA-binding protein acting as a positive regulator of novobiocin biosynthesis. Microbiology 151, 1949–1961.[CrossRef]
    [Google Scholar]
  10. Floriano, B. & Bibb, M. ( 1996; ). afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21, 385–396.[CrossRef]
    [Google Scholar]
  11. Freel Meyers, C. L., Oberthur, M., Anderson, J. W., Kahne, D. & Walsh, C. T. ( 2003; ). Initial characterization of novobiocic acid noviosyl transferase activity of NovM in biosynthesis of the antibiotic novobiocin. Biochemistry 42, 4179–4189.[CrossRef]
    [Google Scholar]
  12. Freitag, A., Rapp, H., Heide, L. & Li, S.-M. ( 2005; ). Metabolic engineering of aminocoumarins: inactivation of the methyltransferase gene cloP and generation of new clorobiocin derivatives in a heterologous host. Chembiochem 6, 1411–1418.[CrossRef]
    [Google Scholar]
  13. Galm, U., Dessoy, M. A., Schmidt, J., Wessjohann, L. A. & Heide, L. ( 2004; ). In vitro and in vivo production of new aminocoumarins by a combined biochemical, genetic and synthetic approach. Chem Biol 11, 173–183.[CrossRef]
    [Google Scholar]
  14. Giraud, M. F., Leonard, G. A., Field, R. A., Berlind, C. & Naismith, J. H. ( 2000; ). RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase. Nat Struct Biol 7, 398–402.[CrossRef]
    [Google Scholar]
  15. Gust, B., Challis, G. L., Fowler, K., Kieser, T. & Chater, K. F. ( 2003; ). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100, 1541–1546.[CrossRef]
    [Google Scholar]
  16. He, X. M. & Liu, H. W. ( 2002; ). Formation of unusual sugars: mechanistic studies and biosynthetic applications. Annu Rev Biochem 71, 701–754.[CrossRef]
    [Google Scholar]
  17. Igarashi, M., Takahashi, Y., Shitara, T., Nakamura, H., Naganawa, H., Miyake, T. & Akamatsu, Y. ( 2005; ). Caprazamycins, novel lipo-nucleoside antibiotics, from Streptomyces sp. J Antibiot 58, 327–337.[CrossRef]
    [Google Scholar]
  18. Jakimowicz, P., Tello, M., Meyers, C. L., Walsh, C. T., Buttner, M. J., Field, R. A. & Lawson, D. M. ( 2006; ). The 1.6-Å resolution crystal structure of NovW: a 4-keto-6-deoxy sugar epimerase from the novobiocin biosynthetic gene cluster of Streptomyces spheroides. Proteins 63, 261–265.[CrossRef]
    [Google Scholar]
  19. Kagan, R. M. & Clarke, S. ( 1994; ). Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys 310, 417–427.[CrossRef]
    [Google Scholar]
  20. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces Genetics. Norwich: John Innes Foundation.
  21. Li, S.-M. & Heide, L. ( 2004; ). Functional analysis of biosynthetic genes of aminocoumarins and production of hybrid antibiotics. Curr Med Chem Anti-Infect Agents 3, 279–295.[CrossRef]
    [Google Scholar]
  22. Li, S.-M. & Heide, L. ( 2005; ). New aminocoumarin antibiotics from genetically engineered Streptomyces strains. Curr Med Chem 12, 419–427.[CrossRef]
    [Google Scholar]
  23. Lombo, F., Braña, A. F., Salas, J. A. & Méndez, C. ( 2004; ). Genetic organization of the biosynthetic gene cluster for the antitumor angucycline oviedomycin in Streptomyces antibioticus ATCC 11891. Chembiochem 5, 1181–1187.[CrossRef]
    [Google Scholar]
  24. MacNeil, D. J., Gewain, K. M., Ruby, C. L., Dezeny, G., Gibbons, P. H. & MacNeil, T. ( 1992; ). Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111, 61–68.[CrossRef]
    [Google Scholar]
  25. Mancy, D., Ninet, L. & Preud′Homme, J. ( 1974; ). Antibiotic 18.631 RP. United States Patent Office, No. 3 793 147.
  26. Maxwell, A. ( 1999; ). DNA gyrase as a drug target. Biochem Soc Trans 27, 48–53.
    [Google Scholar]
  27. Merkel, A. B., Major, L. L., Errey, J. C., Burkart, M. D., Field, R. A., Walsh, C. T. & Naismith, J. H. ( 2004; ). The position of a key tyrosine in dTDP-4-keto-6-deoxy-d-glucose-5-epimerase (EvaD) alters the substrate profile for this RmlC-like enzyme. J Biol Chem 279, 32684–32691.[CrossRef]
    [Google Scholar]
  28. Patroni, J. J. & Stick, R. V. ( 1987; ). The treatment of some cyclic thiocarbonates with methyl halide/propylene oxide. Aust J Chem 40, 795–802.[CrossRef]
    [Google Scholar]
  29. Perez, M., Lombo, F., Zhu, L., Gibson, M., Brana, A. F., Rohr, J., Salas, J. A. & Mendez, C. ( 2005; ). Combining sugar biosynthesis genes for the generation of l- and d-amicetose and formation of two novel antitumor tetracenomycins. Chem Commun 12, 1604–1606.
    [Google Scholar]
  30. Piepersberg, W. & Distler, J. ( 1997; ). Aminoglycosides and sugar components in other secondary metabolites. In Biotechnology, vol. 7, pp. 397–488. Edited by H.-J. Rehm, G. Reed, A. Pühler & P. Stadler. Weinheim: VCH.
  31. Pojer, F., Li, S.-M. & Heide, L. ( 2002; ). Molecular cloning and sequence analysis of the clorobiocin biosynthetic gene cluster: new insights into the biosynthesis of aminocoumarin antibiotics. Microbiology 148, 3901–3911.
    [Google Scholar]
  32. Rodriguez, L., Aguirrezabalaga, I., Allende, N., Brana, A. F., Mendez, C. & Salas, J. A. ( 2002; ). Engineering deoxysugar biosynthetic pathways from antibiotic-producing microorganisms. A tool to produce novel glycosylated bioactive compounds. Chem Biol 9, 721–729.[CrossRef]
    [Google Scholar]
  33. Salas, J. A. & Mendez, C. ( 2005; ). Biosynthesis pathways for desoxysugars in antibiotic-producing actinomycetes: isolation, characterization and generation of novel glycosylated derivatives. J Mol Microbiol Biotechnol 9, 77–85.[CrossRef]
    [Google Scholar]
  34. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Sohng, J. K., Kim, H.-J., Nam, D.-H., Lim, D.-O., Han, J.-M., Lee, H.-J. & Yoo, J.-C. ( 2004; ). Cloning, expression and biological function of a dTDP-deoxyglucose epimerase (gerF) gene from Streptomyces sp. GERI-155. Biotechnol Lett 26, 185–191.[CrossRef]
    [Google Scholar]
  36. Steffensky, M., Mühlenweg, A., Wang, Z.-X., Li, S.-M. & Heide, L. ( 2000; ). Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother 44, 1214–1222.[CrossRef]
    [Google Scholar]
  37. Ströch, K. ( 2003; ). Chemisches Screening von ausgewählten Actinomyceten sowie Strukturaufklärung von Sekundärmetaboliten aus Micromonospora sp. und Pflanzen. PhD thesis, University of Göttingen, Germany.
  38. Thorpe, H. M. & Smith, M. C. ( 1998; ). In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A 95, 5505–5510.[CrossRef]
    [Google Scholar]
  39. Thuy, T. T. T., Lee, H. C., Kim, C. G., Heide, L. & Sohng, J. K. ( 2005; ). Functional characterizations of novWUS involved in novobiocin biosynthesis from Streptomyces spheroides. Arch Biochem Biophys 436, 161–167.[CrossRef]
    [Google Scholar]
  40. Trefzer, A., Salas, J. A. & Bechthold, A. ( 1999; ). Genes and enzymes involved in deoxysugar biosynthesis in bacteria. Nat Prod Rep 16, 283–299.[CrossRef]
    [Google Scholar]
  41. Wang, Z.-X., Li, S.-M. & Heide, L. ( 2000; ). Identification of the coumermycin A1 biosynthetic gene cluster of Streptomyces rishiriensis DSM 40489. Antimicrob Agents Chemother 44, 3040–3048.[CrossRef]
    [Google Scholar]
  42. Weitnauer, G., Gaisser, S., Kellenberger, L., Leadlay, P. F. & Bechthold, A. ( 2002; ). Analysis of a C-methyltransferase gene (aviG1) involved in avilamycin biosynthesis in Streptomyces viridochromogenes Tü57 and complementation of a Saccharopolyspora erythraea eryBIII mutant by aviG1. Microbiology 148, 373–379.
    [Google Scholar]
  43. Westrich, L., Heide, L. & Li, S.-M. ( 2003; ). CloN6, a novel methyltransferase catalysing the methylation of the pyrrole-2-carboxyl moiety of clorobiocin. Chembiochem 4, 768–773.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28931-0
Loading
/content/journal/micro/10.1099/mic.0.28931-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error