1887

Abstract

The aminocoumarin antibiotic clorobiocin contains an unusual branched deoxysugar with a 5,5--dimethyl structure. Inactivation of the putative -methyltransferase gene was carried out, which led to the loss of the axial methyl group at C-5 of this deoxysugar moiety. This result establishes the function of , and at the same time it proves that the biosynthesis of the deoxysugar moiety of clorobiocin proceeds via a 3,5-epimerization of the dTDP-4-keto-6-deoxyglucose intermediate. The inactivation was carried out on a cosmid which contained the entire clorobiocin biosynthetic gene cluster. Expression of the modified cluster in a heterologous host led to the formation of desmethyl-clorobiocin and a structural isomer thereof. Both compounds were isolated on a preparative scale, their structures were elucidated by H-NMR and mass spectroscopy and their antibacterial activity was assayed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28931-0
2006-08-01
2020-08-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2433.html?itemId=/content/journal/micro/10.1099/mic.0.28931-0&mimeType=html&fmt=ahah

References

  1. Albermann C, Soriano A, Jiang J, Vollmer H, Biggins J. B, Barton W. A, Lesniak J, Nikolov D. B, Thorson J. S. 2003; Substrate specificity of NovM: implications for novobiocin biosynthesis and glycorandomization. Org Lett5:933–936[CrossRef]
    [Google Scholar]
  2. Birch A. J, Cameron D. W, Holloway P. W, Rickards R. W. 1960; Further examples of biological C-methylation. Novobiocin and actinomycin. Tetrahedron Lett26–31
    [Google Scholar]
  3. Birch A. J, Holloway R. W, Rickards R. W. 1962; Biosynthesis of noviose, a branched-chain monosaccharide. Biochim Biophys Acta57:143–145[CrossRef]
    [Google Scholar]
  4. Chen H, Zhao Z, Hallis T. M, Guo Z, Liu H.-W. 2001; Insights into the branched-chain formation of mycarose: methylation catalyzed by an (S)-adenosylmethionine-dependent methyltransferase. Angew Chem Int Ed40:607–610[CrossRef]
    [Google Scholar]
  5. Doumith M, Weingarten P, Wehmeier U. F, Salah-Bey K, Benhamou B, Capdevila C, Michel J.-M, Piepersberg W, Raynal M.-C. 2000; Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea . Mol Gen Genet264:477–485[CrossRef]
    [Google Scholar]
  6. Eustáquio A. S, Gust B, Luft T, Li S.-M, Chater K. F, Heide L. 2003; Clorobiocin biosynthesis in Streptomyces . Identification of the halogenase and generation of structural analogs. Chem Biol10:279–288[CrossRef]
    [Google Scholar]
  7. Eustáquio A. S, Gust B, Li S.-M, Pelzer S, Wohlleben W, Chater K. F, Heide L. 2004; Production of 8′-halogenated and 8′-unsubstituted novobiocin derivatives in genetically engineered Streptomyces coelicolor strains. Chem Biol11:1561–1572[CrossRef]
    [Google Scholar]
  8. Eustáquio A. S, Gust B, Galm U, Li S.-M, Chater K. F, Heide L. 2005a; Heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters. Appl Environ Microbiol71:2452–2459[CrossRef]
    [Google Scholar]
  9. Eustáquio A. S, Li S.-M, Heide L. 2005b; NovG, a DNA-binding protein acting as a positive regulator of novobiocin biosynthesis. Microbiology151:1949–1961[CrossRef]
    [Google Scholar]
  10. Floriano B, Bibb M. 1996; afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol21:385–396[CrossRef]
    [Google Scholar]
  11. Freel Meyers C. L, Oberthur M, Anderson J. W, Kahne D, Walsh C. T. 2003; Initial characterization of novobiocic acid noviosyl transferase activity of NovM in biosynthesis of the antibiotic novobiocin. Biochemistry42:4179–4189[CrossRef]
    [Google Scholar]
  12. Freitag A, Rapp H, Heide L, Li S.-M. 2005; Metabolic engineering of aminocoumarins: inactivation of the methyltransferase gene cloP and generation of new clorobiocin derivatives in a heterologous host. Chembiochem6:1411–1418[CrossRef]
    [Google Scholar]
  13. Galm U, Dessoy M. A, Schmidt J, Wessjohann L. A, Heide L. 2004; In vitro and in vivo production of new aminocoumarins by a combined biochemical, genetic and synthetic approach. Chem Biol11:173–183[CrossRef]
    [Google Scholar]
  14. Giraud M. F, Leonard G. A, Field R. A, Berlind C, Naismith J. H. 2000; RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase. Nat Struct Biol7:398–402[CrossRef]
    [Google Scholar]
  15. Gust B, Challis G. L, Fowler K, Kieser T, Chater K. F. 2003; PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A100:1541–1546[CrossRef]
    [Google Scholar]
  16. He X. M, Liu H. W. 2002; Formation of unusual sugars: mechanistic studies and biosynthetic applications. Annu Rev Biochem71:701–754[CrossRef]
    [Google Scholar]
  17. Igarashi M, Takahashi Y, Shitara T, Nakamura H, Naganawa H, Miyake T, Akamatsu Y. 2005; Caprazamycins, novel lipo-nucleoside antibiotics, from Streptomyces sp. J Antibiot58:327–337[CrossRef]
    [Google Scholar]
  18. Jakimowicz P, Tello M, Meyers C. L, Walsh C. T, Buttner M. J, Field R. A, Lawson D. M. 2006; The 1.6-Å resolution crystal structure of NovW: a 4-keto-6-deoxy sugar epimerase from the novobiocin biosynthetic gene cluster of Streptomyces spheroides . Proteins63:261–265[CrossRef]
    [Google Scholar]
  19. Kagan R. M, Clarke S. 1994; Widespread occurrence of three sequence motifs in diverse S -adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys310:417–427[CrossRef]
    [Google Scholar]
  20. Kieser T, Bibb M. J, Buttner M. J, Chater K. F, Hopwood D. A. 2000; Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  21. Li S.-M, Heide L. 2004; Functional analysis of biosynthetic genes of aminocoumarins and production of hybrid antibiotics. Curr Med Chem Anti-Infect Agents3:279–295[CrossRef]
    [Google Scholar]
  22. Li S.-M, Heide L. 2005; New aminocoumarin antibiotics from genetically engineered Streptomyces strains. Curr Med Chem12:419–427[CrossRef]
    [Google Scholar]
  23. Lombo F, Salas J. A, Braña A. F, Méndez C. 2004; Genetic organization of the biosynthetic gene cluster for the antitumor angucycline oviedomycin in Streptomyces antibioticus ATCC 11891. Chembiochem5:1181–1187[CrossRef]
    [Google Scholar]
  24. MacNeil D. J, Gewain K. M, Ruby C. L, Dezeny G, Gibbons P. H, MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene111:61–68[CrossRef]
    [Google Scholar]
  25. Mancy D, Ninet L, Preud′Homme J. 1974; Antibiotic 18.631 RP United States Patent Office; No. 3 793 147:
    [Google Scholar]
  26. Maxwell A. 1999; DNA gyrase as a drug target. Biochem Soc Trans27:48–53
    [Google Scholar]
  27. Merkel A. B, Major L. L, Errey J. C, Burkart M. D, Field R. A, Walsh C. T, Naismith J. H. 2004; The position of a key tyrosine in dTDP-4-keto-6-deoxy-d-glucose-5-epimerase (EvaD) alters the substrate profile for this RmlC-like enzyme. J Biol Chem279:32684–32691[CrossRef]
    [Google Scholar]
  28. Patroni J. J, Stick R. V. 1987; The treatment of some cyclic thiocarbonates with methyl halide/propylene oxide. Aust J Chem40:795–802[CrossRef]
    [Google Scholar]
  29. Perez M, Lombo F, Zhu L, Gibson M, Brana A. F, Rohr J, Salas J. A, Mendez C. 2005; Combining sugar biosynthesis genes for the generation of l- and d-amicetose and formation of two novel antitumor tetracenomycins. Chem Commun12:1604–1606
    [Google Scholar]
  30. Piepersberg W, Distler J. 1997; Aminoglycosides and sugar components in other secondary metabolites. In Biotechnologyvol. 7 pp 397–488 Edited by Rehm H.-J., Reed G., Stadler P., Pühler A.. Weinheim: VCH;
    [Google Scholar]
  31. Pojer F, Li S.-M, Heide L. 2002; Molecular cloning and sequence analysis of the clorobiocin biosynthetic gene cluster: new insights into the biosynthesis of aminocoumarin antibiotics. Microbiology148:3901–3911
    [Google Scholar]
  32. Rodriguez L, Aguirrezabalaga I, Allende N, Brana A. F, Mendez C, Salas J. A. 2002; Engineering deoxysugar biosynthetic pathways from antibiotic-producing microorganisms. A tool to produce novel glycosylated bioactive compounds. Chem Biol9:721–729[CrossRef]
    [Google Scholar]
  33. Salas J. A, Mendez C. 2005; Biosynthesis pathways for desoxysugars in antibiotic-producing actinomycetes: isolation, characterization and generation of novel glycosylated derivatives. J Mol Microbiol Biotechnol9:77–85[CrossRef]
    [Google Scholar]
  34. Sambrook J, Russell D. W. 2001; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Sohng J. K, Kim H.-J, Nam D.-H, Lim D.-O, Han J.-M, Lee H.-J, Yoo J.-C. 2004; Cloning, expression and biological function of a dTDP-deoxyglucose epimerase (gerF) gene from Streptomyces sp. GERI-155. Biotechnol Lett26:185–191[CrossRef]
    [Google Scholar]
  36. Steffensky M, Wang Z.-X, Li S.-M, Heide L, Mühlenweg A. 2000; Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother44:1214–1222[CrossRef]
    [Google Scholar]
  37. Ströch K. 2003; Chemisches Screening von ausgewählten Actinomyceten sowie Strukturaufklärung von Sekundärmetaboliten aus Micromonospora sp. und Pflanzen PhD thesis University of Göttingen; Germany:
    [Google Scholar]
  38. Thorpe H. M, Smith M. C. 1998; In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A95:5505–5510[CrossRef]
    [Google Scholar]
  39. Thuy T. T. T, Lee H. C, Kim C. G, Heide L, Sohng J. K. 2005; Functional characterizations of novWUS involved in novobiocin biosynthesis from Streptomyces spheroides . Arch Biochem Biophys436:161–167[CrossRef]
    [Google Scholar]
  40. Trefzer A, Salas J. A, Bechthold A. 1999; Genes and enzymes involved in deoxysugar biosynthesis in bacteria. Nat Prod Rep16:283–299[CrossRef]
    [Google Scholar]
  41. Wang Z.-X, Li S.-M, Heide L. 2000; Identification of the coumermycin A1 biosynthetic gene cluster of Streptomyces rishiriensis DSM 40489. Antimicrob Agents Chemother44:3040–3048[CrossRef]
    [Google Scholar]
  42. Weitnauer G, Gaisser S, Kellenberger L, Leadlay P. F, Bechthold A. 2002; Analysis of a C-methyltransferase gene (aviG1) involved in avilamycin biosynthesis in Streptomyces viridochromogenes Tü57 and complementation of a Saccharopolyspora erythraea eryBIII mutant by aviG1. Microbiology148:373–379
    [Google Scholar]
  43. Westrich L, Heide L, Li S.-M. 2003; CloN6, a novel methyltransferase catalysing the methylation of the pyrrole-2-carboxyl moiety of clorobiocin. Chembiochem4:768–773[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28931-0
Loading
/content/journal/micro/10.1099/mic.0.28931-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error