1887

Abstract

Several cellular pathways have been identified which affect the efficiency of thiamine biosynthesis in . Mutants defective in iron–sulfur (Fe–S) cluster metabolism are less efficient at synthesis of the pyrimidine moiety of thiamine. These mutants are compromised for the conversion of aminoimidazole ribotide (AIR) to 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P), not the synthesis of AIR. The gene product ThiC contains potential ligands for an Fe–S cluster that are required for function . The conversion of AIR to HMP-P is sensitive to oxidative stress, and variants of ThiC have been identified that have increased sensitivity to oxidative growth conditions. The data are consistent with ThiC or an as-yet-unidentified protein involved in HMP-P synthesis containing an Fe–S cluster required for its physiological function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28926-0
2006-08-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2345.html?itemId=/content/journal/micro/10.1099/mic.0.28926-0&mimeType=html&fmt=ahah

References

  1. Allen, S., Zilles, J. L. & Downs, D. M. ( 2002; ). Metabolic flux in both the purine mononucleotide and histidine biosynthetic pathways can influence synthesis of the hydroxymethyl pyrimidine moiety of thiamine in Salmonella enterica. J Bacteriol 184, 6130–6137.[CrossRef]
    [Google Scholar]
  2. Bartolome, B., Jubete, Y., Martinez, E. & de la Cruz, F. ( 1991; ). Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene 102, 75–78.[CrossRef]
    [Google Scholar]
  3. Beck, B. J. & Downs, D. M. ( 1998; ). The apbE gene encodes a lipoprotein involved in thiamine synthesis in Salmonella typhimurium. J Bacteriol 180, 885–891.
    [Google Scholar]
  4. Benov, L. & Fridovich, I. ( 1999; ). Why superoxide imposes an aromatic amino acid auxotrophy on Escherichia coli. The transketolase connection. J Biol Chem 274, 4202–4206.[CrossRef]
    [Google Scholar]
  5. Benov, L., Kredich, N. M. & Fridovich, I. ( 1996; ). The mechanism of the auxotrophy for sulfur-containing amino acids imposed upon Escherichia coli by superoxide. J Biol Chem 271, 21037–21040.[CrossRef]
    [Google Scholar]
  6. Bhat, B., Groziak, M. P. & Leonard, N. J. ( 1990; ). Nonenzymatic synthesis and properties of 5-aminoimidazole ribonucleotide (AIR). Synthesis of specifically 15N-labeled 5-aminoimidazole ribonucleoside (AIRs) derivatives. J Am Chem Soc 112, 4891–4897.[CrossRef]
    [Google Scholar]
  7. Carlioz, A. & Touati, D. ( 1986; ). Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J 5, 623–630.
    [Google Scholar]
  8. Castilho, B. A., Olfson, P. & Casadaban, M. J. ( 1984; ). Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol 158, 488–495.
    [Google Scholar]
  9. Chabriere, E., Charon, M. H., Volbeda, A., Pieulle, L., Hatchikian, E. C. & Fontecilla-Camps, J. C. ( 1999; ). Crystal structures of the key anaerobic enzyme pyruvate : ferredoxin oxidoreductase, free and in complex with pyruvate. Nat Struct Biol 6, 182–190.[CrossRef]
    [Google Scholar]
  10. Charon, M. H., Volbeda, A., Chabriere, E., Pieulle, L. & Fontecilla-Camps, J. C. ( 1999; ). Structure and electron transfer mechanism of pyruvate : ferredoxin oxidoreductase. Curr Opin Struct Biol 9, 663–669.[CrossRef]
    [Google Scholar]
  11. Cui, Q., Thorgersen, M. P., Westler, W. M., Markley, J. L. & Downs, D. M. ( 2006; ). Solution structure of YggX: a prokaryotic protein involved in Fe(II) trafficking. Proteins 62, 578–586.
    [Google Scholar]
  12. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  13. Davis, R. W., Botstein, D., Roth, J. R. & Cold Spring Harbor Laboratory ( 1980; ). Advanced Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  14. Dougherty, M. & Downs, D. M. ( 2003; ). The stm4066 gene product of Salmonella enterica serovar Typhimurium has aminoimidazole riboside (AIRs) kinase activity and allows AIRs to satisfy the thiamine requirement of pur mutant strains. J Bacteriol 185, 332–339.[CrossRef]
    [Google Scholar]
  15. Dougherty, M. J. & Downs, D. M. ( 2004; ). A mutant allele of rpoD results in increased conversion of aminoimidazole ribotide to hydroxymethyl pyrimidine in Salmonella enterica. J Bacteriol 186, 4034–4037.[CrossRef]
    [Google Scholar]
  16. Downs, D. M. & Petersen, L. ( 1994; ). apbA, a new genetic locus involved in thiamine biosynthesis in Salmonella typhimurium. J Bacteriol 176, 4858–4864.
    [Google Scholar]
  17. Estramareix, B. & David, S. ( 1990; ). Conversion of 5-aminoimidazole ribotide to the pyrimidine of thiamin in enterobacteria: study of the pathway with specifically labeled samples of riboside. Biochim Biophys Acta 1035, 154–160.[CrossRef]
    [Google Scholar]
  18. Estramareix, B. & Therisod, M. ( 1984; ). Biosynthesis of thiamin: 5-aminoimidazole as the precursor of all the carbon atoms of the pyrimidine moiety. J Am Chem Soc 106, 3857–3860.[CrossRef]
    [Google Scholar]
  19. Flint, D. H., Smyk-Randall, E., Tuminello, J. F., Draczynska-Lusiak, B. & Brown, O. R. ( 1993; ). The inactivation of dihydroxy-acid dehydratase in Escherichia coli treated with hyperbaric oxygen occurs because of the destruction of its Fe–S cluster, but the enzyme remains in the cell in a form that can be reactivated. J Biol Chem 268, 25547–25552.
    [Google Scholar]
  20. Frodyma, M. E. & Downs, D. ( 1998; ). ApbA, the ketopantoate reductase enzyme of Salmonella typhimurium is required for the synthesis of thiamine via the alternative pyrimidine biosynthetic pathway. J Biol Chem 273, 5572–5576.[CrossRef]
    [Google Scholar]
  21. Frodyma, M., Rubio, A. & Downs, D. M. ( 2000; ). Reduced flux through the purine biosynthetic pathway results in an increased requirement for coenzyme A in thiamine synthesis in Salmonella enterica serovar Typhimurium. J Bacteriol 182, 236–240.[CrossRef]
    [Google Scholar]
  22. Gralnick, J. & Downs, D. ( 2001; ). Protection from superoxide damage associated with an increased level of the YggX protein in Salmonella enterica. Proc Natl Acad Sci U S A 98, 8030–8035.[CrossRef]
    [Google Scholar]
  23. Gralnick, J., Webb, E., Beck, B. & Downs, D. ( 2000; ). Lesions in gshA (encoding gamma-l-glutamyl-l-cysteine synthetase) prevent aerobic synthesis of thiamine in Salmonella enterica serovar typhimurium LT2. J Bacteriol 182, 5180–5187.[CrossRef]
    [Google Scholar]
  24. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.
    [Google Scholar]
  25. Harlow, E. & Lane, D. ( 1999; ). Using Antibodies: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Hassan, H. M. ( 1984; ). Exacerbation of superoxide radical formation by paraquat. Methods Enzymol 105, 523–532.
    [Google Scholar]
  27. Kuo, C., Mashino, T. & Fridovich, I. ( 1987; ). α,β-Dihydroxyisovalerate dehydratase. A superoxide-sensitive enzyme. J Biol Chem 262, 4724–4727.
    [Google Scholar]
  28. Lawhorn, B. G., Mehl, R. A. & Begley, T. P. ( 2004; ). Biosynthesis of the thiamin pyrimidine: the reconstitution of a remarkable rearrangement reaction. Org Biomol Chem 2, 2538–2546.[CrossRef]
    [Google Scholar]
  29. Leonardi, R., Fairhurst, S. A., Kriek, M., Lowe, D. J. & Roach, P. L. ( 2003; ). Thiamine biosynthesis in Escherichia coli: isolation and initial characterisation of the ThiGH complex. FEBS Lett 539, 95–99.[CrossRef]
    [Google Scholar]
  30. Martinez-Gomez, N. C., Robers, M. & Downs, D. M. ( 2004; ). Mutational analysis of ThiH, a member of the radical S-adenosylmethionine (AdoMet) protein superfamily. J Biol Chem 279, 40505–40510.[CrossRef]
    [Google Scholar]
  31. Petersen, L., Enos-Berlage, J. & Downs, D. M. ( 1996; ). Genetic analysis of metabolic crosstalk and its impact on thiamine synthesis in Salmonella typhimurium. Genetics 143, 37–44.
    [Google Scholar]
  32. Pieulle, L., Guigliarelli, B., Asso, M., Dole, F., Bernadac, A. & Hatchikian, E. C. ( 1995; ). Isolation and characterization of the pyruvate-ferredoxin oxidoreductase from the sulfate-reducing bacterium Desulfovibrio africanus. Biochim Biophys Acta 1250, 49–59.[CrossRef]
    [Google Scholar]
  33. Pieulle, L., Magro, V. & Hatchikian, E. C. ( 1997; ). Isolation and analysis of the gene encoding the pyruvate-ferredoxin oxidoreductase of Desulfovibrio africanus, production of the recombinant enzyme in Escherichia coli, and effect of carboxy-terminal deletions on its stability. J Bacteriol 179, 5684–5692.
    [Google Scholar]
  34. Skovran, E. & Downs, D. M. ( 2000; ). Metabolic defects caused by mutations in the isc gene cluster in Salmonella enterica serovar Typhimurium: implications for thiamine synthesis. J Bacteriol 182, 3896–3903.[CrossRef]
    [Google Scholar]
  35. Skovran, E. & Downs, D. M. ( 2003; ). Lack of the ApbC or ApbE protein results in a defect in Fe–S cluster metabolism in Salmonella enterica serovar Typhimurium. J Bacteriol 185, 98–106.[CrossRef]
    [Google Scholar]
  36. Skovran, E., Lauhon, C. T. & Downs, D. M. ( 2004; ). Lack of YggX results in chronic oxidative stress and uncovers subtle defects in Fe–S cluster metabolism in Salmonella enterica. J Bacteriol 186, 7626–7634.[CrossRef]
    [Google Scholar]
  37. Sofia, H. J., Chen, G., Hetzler, B. G., Reyes-Spindola, J. F. & Miller, N. E. ( 2001; ). Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29, 1097–1106.[CrossRef]
    [Google Scholar]
  38. Vander Horn, P. B., Backstrom, A. D., Stewart, V. & Begley, T. P. ( 1993; ). Structural genes for thiamine biosynthetic enzymes (thiCEFGH) in Escherichia coli K-12. J Bacteriol 175, 982–992.
    [Google Scholar]
  39. Vogel, H. J. & Bonner, D. M. ( 1956; ). Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218, 97–106.
    [Google Scholar]
  40. Way, J. C., Davis, M. A., Morisato, D., Roberts, D. E. & Kleckner, N. ( 1984; ). New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene 32, 369–379.[CrossRef]
    [Google Scholar]
  41. Zhang, Y. & Begley, T. P. ( 1997; ). Cloning, sequencing and regulation of thiA, a thiamin biosynthesis gene from Bacillus subtilis. Gene 198, 73–82.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28926-0
Loading
/content/journal/micro/10.1099/mic.0.28926-0
Loading

Data & Media loading...

Supplements

List of primers. [ PDF] (10 kb) Alignment of 30 ThiC homologues from diverse organisms. Shading indicates 100% conservation (black), 75% conservation (dark grey), and 50% conservation (light grey). Figure prepared using ClustalX and GeneDoc software. [ PDF] (15 pages, 320 kb)

PDF

List of primers. [ PDF] (10 kb) Alignment of 30 ThiC homologues from diverse organisms. Shading indicates 100% conservation (black), 75% conservation (dark grey), and 50% conservation (light grey). Figure prepared using ClustalX and GeneDoc software. [ PDF] (15 pages, 320 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error