Ultrastructure and gliding motility of , a possible human respiratory pathogen Free

Abstract

Despite their small size and reduced genomes, many mycoplasma cells have complex structures involved in virulence. has served as a model for the study of virulence factors of a variety of mycoplasma species that cause disease in humans and animals. These cells feature an attachment organelle, which mediates cytadherence and gliding motility and is required for virulence. An essential component of the architecture of the attachment organelle is an internal detergent-insoluble structure, the electron-dense core. Little information is known regarding its underlying mechanisms. , a close relative of both and the avian pathogen , is a recently discovered organism associated with chronic bronchitis in immunosuppressed individuals. This work describes both the ultrastructure of strain A39 as visualized by scanning electron microscopy and the gliding motility characteristics of this organism on glass. Though externally resembling , cells were found to have a Triton X-100-insoluble structure similar to the electron-dense core but with different dimensions. also exhibited gliding motility using time-lapse microcinematography; its movement was slower than that of either or .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28905-0
2006-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/2181.html?itemId=/content/journal/micro/10.1099/mic.0.28905-0&mimeType=html&fmt=ahah

References

  1. Balish M. F, Krause D. C. 2002; Cytadherence and the cytoskeleton. In Molecular Biology and Pathogenicity of the Mycoplasmas pp  491–518 Edited by Razin S., Herrmann R. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  2. Balish M. F, Krause D. C. 2005; Mycoplasma attachment organelle and cell division. In Mycoplasmas: Molecular Biology, Pathogenicity, and Strategies for Control pp  189–237 Edited by Blanchard A., Browning G. Norwich, UK: Horizon Bioscience;
    [Google Scholar]
  3. Baseman J. B, Morrison-Plummer J, Drouillard D, Puleo-Scheppke B, Tryon V. V, Holt S. C. 1987; Identification of a 32-kilodalton protein of Mycoplasma pneumoniae assocated with hemadsorption. Isr J Med Sci 23:474–479
    [Google Scholar]
  4. Biberfeld G, Biberfeld P. 1970; Ultrastructural features of Mycoplasma pneumoniae . J Bacteriol 102:855–861
    [Google Scholar]
  5. Bradbury J. M, Abdul-Wahab O. M, Yavari C. A, Dupiellet J. P, Bove J. M. 1993; Mycoplasma imitans sp. nov. is related to Mycoplasma gallisepticum and found in birds. Int J Syst Bacteriol 43:721–728 [CrossRef]
    [Google Scholar]
  6. Bredt W. 1968; Motility and multiplication of Mycoplasma pneumoniae . A phase contrast study. Pathol Microbiol 32:321–326
    [Google Scholar]
  7. Bredt W. 1979; Motility. In The Mycoplasmas vol. 1 pp. 141–155 Edited by Barile M. F., Razin S. Washington, DC: Academic Press;
    [Google Scholar]
  8. Del Giudice R. A, Tully J. G, Rose D. L, Cole R. M. 1985; Mycoplasma pirum sp. nov., a terminal structured mollicute from cell cultures. Int J Syst Bacteriol 35:285–291 [CrossRef]
    [Google Scholar]
  9. Dhandayuthapani S, Rasmussen W. G, Baseman J. B. 1999; Disruption of gene mg218 of Mycoplasma genitalium through homologous recombination leads to an adherence-deficient phenotype. Proc Natl Acad Sci U S A 96:5227–5232 [CrossRef]
    [Google Scholar]
  10. Feldner J, Gobel U, Bredt W. 1982; Mycoplasma pneumoniae adhesin localized to tip structure by monoclonal antibody. Nature 298:765–767 [CrossRef]
    [Google Scholar]
  11. Gobel U, Speth V, Bredt W. 1981; Filamentous structures in adherent Mycoplasma pneumoniae cells treated with nonionic detergents. J Cell Biol 91:537–543 [CrossRef]
    [Google Scholar]
  12. Hasselbring B. M, Jordan J. L, Krause D. C. 2005; Mutant analysis reveals specific requirement for protein P30 in Mycoplasma pneumoniae gliding motility. J Bacteriol 187:6281–6289 [CrossRef]
    [Google Scholar]
  13. Hegermann J, Herrmann R, Mayer F. 2002; Cytoskeletal elements in the bacterium Mycoplasma pneumoniae . Naturwissenschaften 89:453–458 [CrossRef]
    [Google Scholar]
  14. Hu P. C, Cole R. M, Huang Y. S, Graham T. A, Gardner D. E, Collier A. M, Clyde W. A. 1982; Mycoplasma pneumoniae infection: role of a surface protein in the attachment organelle. Science 216:313–315 [CrossRef]
    [Google Scholar]
  15. Jensen J. S. 2004; Mycoplasma genitalium : the aetiological agent of urethritis and other sexually transmitted diseases. J Eur Acad Dermatol Venereol 18:1–11
    [Google Scholar]
  16. Johansson K. E, Pettersson B. 2002; Taxonomy of Mollicutes. In Molecular Biology and Pathogenicity of the Mycoplasmas pp  1–29 Edited by Razin S., Herrmann R. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  17. Kirchhoff H. 1992; Motility. In Mycoplasmas: Molecular Biology and Pathogenesis pp  289–306 Edited by Maniloff J., McElhaney R. N., Finch L. R., Baseman J. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Kirchhoff H, Rosengarten R, Lotz W, Fischer M, Lopatta D. 1984; Flask-shaped mycoplasmas: properties and pathogenicity for man and animals. Isr J Med Sci 20:848–853
    [Google Scholar]
  19. Krause D. C. 1996; Mycoplasma pneumoniae cytadherence: unraveling the tie that binds. Mol Microbiol 20:247–253 [CrossRef]
    [Google Scholar]
  20. Krause D. C, Balish M. F. 2004; Cellular engineering in a minimal microbe: structure and assembly of the terminal organelle of Mycoplasma pneumoniae . Mol Microbiol 51:917–924 [CrossRef]
    [Google Scholar]
  21. Levisohn S, Kleven S. H. 2000; Avian mycoplasmosis (Mycoplasma gallisepticum). Rev Sci Tech 19:425–442
    [Google Scholar]
  22. May M, Papazisi L, Gorton T. S, Geary S. J. 2006; Identification of fibronectin-binding proteins in Mycoplasma gallisepticum strain R. Infect Immun 74:1777–1785 [CrossRef]
    [Google Scholar]
  23. Meng K. E, Pfister R. M. 1980; Intracellular structures of Mycoplasma pneumoniae revealed after membrane removal. J Bacteriol 144:390–399
    [Google Scholar]
  24. Mernaugh G. R, Dallo S. F, Holt S. C, Baseman J. B. 1993; Properties of adhering and nonadhering populations of Mycoplasma genitalium . Clin Infect Dis 17 Suppl 1:S69–S78
    [Google Scholar]
  25. Miyata M. 2005; Gliding motility of mycoplasmas: the mechanism cannot be explained by current biology. In Mycoplasmas: Molecular Biology, Pathogenicity, and Strategies for Control pp  137–164 Edited by Blanchard A., Browning G. Norwich, UK: Horizon Bioscience;
    [Google Scholar]
  26. Morowitz H. J, Maniloff J. 1966; Analysis of the life cycle of Mycoplasma gallisepticum . J Bacteriol 91:1638–1644
    [Google Scholar]
  27. Mudahi-Orenstein S, Levisohn S, Yogev D, Geary S. J. 2003; Cytadherence-deficient mutants of Mycoplasma gallisepticum generated by transposon mutagenesis. Infect Immun 71:3812–3820 [CrossRef]
    [Google Scholar]
  28. Papazisi L, Gladd M, Liao X, Yogev D, Geary S. J, Frasca S., Jr. 2002; GapA and CrmA coexpression is essential for Mycoplasma gallisepticum cytadherence and virulence. Infect Immun 70:6839–6845 [CrossRef]
    [Google Scholar]
  29. Pitcher D. G, Windsor D, Windsor H, Bradbury J. M, Yavari C, Jensen J. S, Ling C, Webster D. 2005; Mycoplasma amphoriforme sp. nov., isolated from a patient with chronic bronchopneumonia. Int J Syst Evol Microbiol 55:2589–2594 [CrossRef]
    [Google Scholar]
  30. Radestock U, Bredt W. 1977; Motility of Mycoplasma pneumoniae . J Bacteriol 129:1495–1501
    [Google Scholar]
  31. Razin S, Yogev D, Naot Y. 1998; Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62:1094–1156
    [Google Scholar]
  32. Seto S, Miyata M. 2003; Attachment organelle formation represented by localization of cytadherence proteins and formation of the electron-dense core in wild-type and mutant strains of Mycoplasma pneumoniae . J Bacteriol 185:1082–1091 [CrossRef]
    [Google Scholar]
  33. Seto S, Layh-Schmitt G, Kenri T, Miyata M. 2001; Visualization of the attachment organelle and cytadherence proteins of Mycoplasma pneumoniae by immunofluorescence microscopy. J Bacteriol 183:1621–1630 [CrossRef]
    [Google Scholar]
  34. Seto S, Kenri T, Tomiyama T, Miyata M. 2005a; Involvement of P1 adhesin in gliding motility of Mycoplasma pneumoniae as revealed by the inhibitory effects of antibody under optimized gliding conditions. J Bacteriol 187:1875–1877 [CrossRef]
    [Google Scholar]
  35. Seto S, Uenoyama A, Miyata M. 2005b; Identification of a 521-kilodalton protein (Gli521) involved in force generation or force transmission for Mycoplasma mobile gliding. J Bacteriol 187:3502–3510 [CrossRef]
    [Google Scholar]
  36. Simecka J. W. 2005; Immune responses following mycoplasma infection. In Mycoplasmas: Molecular Biology, Pathogenicity, and Strategies for Control pp  485–534 Edited by Blanchard A., Browning G. Norwich, UK: Horizon Bioscience;
    [Google Scholar]
  37. Stevens M. K, Krause D. C. 1991; Localization of the Mycoplasma pneumoniae cytadherence-accessory proteins HMW1 and HMW4 in the cytoskeletonlike Triton shell. J Bacteriol 173:1041–1050
    [Google Scholar]
  38. Tryon V. V, Baseman J. B. 1992; Pathogenic determinants and mechanisms. In Mycoplasmas: Molecular Biology and Pathogenesis pp  457–471 Edited by Maniloff J., McElhaney R. N., Finch L. R., Baseman J. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  39. Tully J. G, Rose D. L, Whitcomb R. F, Wenzel R. P. 1979; Enhanced isolation of Mycoplasma pneumoniae from throat washings with a newly-modified culture medium. J Infect Dis 139:478–482 [CrossRef]
    [Google Scholar]
  40. Uenoyama A, Miyata M. 2005; Identification of a 123-kilodalton protein (Gli123) involved in machinery for gliding motility of Mycoplasma mobile . J Bacteriol 187:5578–5584 [CrossRef]
    [Google Scholar]
  41. Waites K. B, Talkington D. F. 2004; Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev 17:697–728 [CrossRef]
    [Google Scholar]
  42. Webster D, Windsor H, Ling C, Windsor D, Pitcher D. 2003; Chronic bronchitis in immunocompromised patients; association with a novel Mycoplasma species. Eur J Clin Microbiol Infect Dis 22:530–534 [CrossRef]
    [Google Scholar]
  43. Willby M. J, Krause D. C. 2002; Characterization of a Mycoplasma pneumoniae hmw3 mutant: implications for attachment organelle assembly. J Bacteriol 184:3061–3068 [CrossRef]
    [Google Scholar]
  44. Yogev D, Browning G. F, Wise K. S. 2002; Genetic mechanisms of surface variation. In Molecular Biology and Pathogenicity of the Mycoplasmas pp  417–444 Edited by Razin S., Herrmann R. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28905-0
Loading
/content/journal/micro/10.1099/mic.0.28905-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed