1887

Abstract

Despite their small size and reduced genomes, many mycoplasma cells have complex structures involved in virulence. has served as a model for the study of virulence factors of a variety of mycoplasma species that cause disease in humans and animals. These cells feature an attachment organelle, which mediates cytadherence and gliding motility and is required for virulence. An essential component of the architecture of the attachment organelle is an internal detergent-insoluble structure, the electron-dense core. Little information is known regarding its underlying mechanisms. , a close relative of both and the avian pathogen , is a recently discovered organism associated with chronic bronchitis in immunosuppressed individuals. This work describes both the ultrastructure of strain A39 as visualized by scanning electron microscopy and the gliding motility characteristics of this organism on glass. Though externally resembling , cells were found to have a Triton X-100-insoluble structure similar to the electron-dense core but with different dimensions. also exhibited gliding motility using time-lapse microcinematography; its movement was slower than that of either or .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28905-0
2006-07-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/2181.html?itemId=/content/journal/micro/10.1099/mic.0.28905-0&mimeType=html&fmt=ahah

References

  1. Balish M. F, Krause D. C. 2002; Cytadherence and the cytoskeleton. In Molecular Biology and Pathogenicity of the Mycoplasmas pp 491–518 Edited by Razin S., Herrmann R.. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  2. Balish M. F, Krause D. C. 2005; Mycoplasma attachment organelle and cell division. In Mycoplasmas: Molecular Biology, Pathogenicity, and Strategies for Control pp 189–237 Edited by Blanchard A., Browning G.. Norwich, UK: Horizon Bioscience;
    [Google Scholar]
  3. Baseman J. B, Morrison-Plummer J, Drouillard D, Puleo-Scheppke B, Tryon V. V, Holt S. C. 1987; Identification of a 32-kilodalton protein of Mycoplasma pneumoniae assocated with hemadsorption. Isr J Med Sci23:474–479
    [Google Scholar]
  4. Biberfeld G, Biberfeld P. 1970; Ultrastructural features of Mycoplasma pneumoniae . J Bacteriol102:855–861
    [Google Scholar]
  5. Bradbury J. M, Abdul-Wahab O. M, Yavari C. A, Dupiellet J. P, Bove J. M. 1993; Mycoplasma imitans sp. nov. is related to Mycoplasma gallisepticum and found in birds. Int J Syst Bacteriol43:721–728[CrossRef]
    [Google Scholar]
  6. Bredt W. 1968; Motility and multiplication of Mycoplasma pneumoniae . A phase contrast study. Pathol Microbiol32:321–326
    [Google Scholar]
  7. Bredt W. 1979; Motility. In The Mycoplasmasvol. 1 pp.141–155 Edited by Barile M. F., Razin S.. Washington, DC: Academic Press;
    [Google Scholar]
  8. Del Giudice R. A, Tully J. G, Rose D. L, Cole R. M. 1985; Mycoplasma pirum sp. nov., a terminal structured mollicute from cell cultures. Int J Syst Bacteriol35:285–291[CrossRef]
    [Google Scholar]
  9. Dhandayuthapani S, Rasmussen W. G, Baseman J. B. 1999; Disruption of gene mg218 of Mycoplasma genitalium through homologous recombination leads to an adherence-deficient phenotype. Proc Natl Acad Sci U S A96:5227–5232[CrossRef]
    [Google Scholar]
  10. Feldner J, Gobel U, Bredt W. 1982; Mycoplasma pneumoniae adhesin localized to tip structure by monoclonal antibody. Nature298:765–767[CrossRef]
    [Google Scholar]
  11. Gobel U, Speth V, Bredt W. 1981; Filamentous structures in adherent Mycoplasma pneumoniae cells treated with nonionic detergents. J Cell Biol91:537–543[CrossRef]
    [Google Scholar]
  12. Hasselbring B. M, Jordan J. L, Krause D. C. 2005; Mutant analysis reveals specific requirement for protein P30 in Mycoplasma pneumoniae gliding motility. J Bacteriol187:6281–6289[CrossRef]
    [Google Scholar]
  13. Hegermann J, Herrmann R, Mayer F. 2002; Cytoskeletal elements in the bacterium Mycoplasma pneumoniae . Naturwissenschaften89:453–458[CrossRef]
    [Google Scholar]
  14. Hu P. C, Cole R. M, Huang Y. S, Graham T. A, Gardner D. E, Collier A. M, Clyde W. A. 1982; Mycoplasma pneumoniae infection: role of a surface protein in the attachment organelle. Science216:313–315[CrossRef]
    [Google Scholar]
  15. Jensen J. S. 2004; Mycoplasma genitalium : the aetiological agent of urethritis and other sexually transmitted diseases. J Eur Acad Dermatol Venereol18:1–11
    [Google Scholar]
  16. Johansson K. E, Pettersson B. 2002; Taxonomy of Mollicutes. In Molecular Biology and Pathogenicity of the Mycoplasmas pp 1–29 Edited by Razin S., Herrmann R.. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  17. Kirchhoff H. 1992; Motility. In Mycoplasmas: Molecular Biology and Pathogenesis pp 289–306 Edited by Maniloff J., McElhaney R. N., Finch L. R., Baseman J. B.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Kirchhoff H, Rosengarten R, Lotz W, Fischer M, Lopatta D. 1984; Flask-shaped mycoplasmas: properties and pathogenicity for man and animals. Isr J Med Sci20:848–853
    [Google Scholar]
  19. Krause D. C. 1996; Mycoplasma pneumoniae cytadherence: unraveling the tie that binds. Mol Microbiol20:247–253[CrossRef]
    [Google Scholar]
  20. Krause D. C, Balish M. F. 2004; Cellular engineering in a minimal microbe: structure and assembly of the terminal organelle of Mycoplasma pneumoniae . Mol Microbiol51:917–924[CrossRef]
    [Google Scholar]
  21. Levisohn S, Kleven S. H. 2000; Avian mycoplasmosis (Mycoplasma gallisepticum). Rev Sci Tech19:425–442
    [Google Scholar]
  22. May M, Papazisi L, Gorton T. S, Geary S. J. 2006; Identification of fibronectin-binding proteins in Mycoplasma gallisepticum strain R. Infect Immun74:1777–1785[CrossRef]
    [Google Scholar]
  23. Meng K. E, Pfister R. M. 1980; Intracellular structures of Mycoplasma pneumoniae revealed after membrane removal. J Bacteriol144:390–399
    [Google Scholar]
  24. Mernaugh G. R, Dallo S. F, Holt S. C, Baseman J. B. 1993; Properties of adhering and nonadhering populations of Mycoplasma genitalium . Clin Infect Dis17 Suppl 1:S69–S78
    [Google Scholar]
  25. Miyata M. 2005; Gliding motility of mycoplasmas: the mechanism cannot be explained by current biology. In Mycoplasmas: Molecular Biology, Pathogenicity, and Strategies for Control pp 137–164 Edited by Blanchard A., Browning G.. Norwich, UK: Horizon Bioscience;
    [Google Scholar]
  26. Morowitz H. J, Maniloff J. 1966; Analysis of the life cycle of Mycoplasma gallisepticum . J Bacteriol91:1638–1644
    [Google Scholar]
  27. Mudahi-Orenstein S, Levisohn S, Yogev D, Geary S. J. 2003; Cytadherence-deficient mutants of Mycoplasma gallisepticum generated by transposon mutagenesis. Infect Immun71:3812–3820[CrossRef]
    [Google Scholar]
  28. Papazisi L, Gladd M, Liao X, Yogev D, Geary S. J, Frasca S., Jr. 2002; GapA and CrmA coexpression is essential for Mycoplasma gallisepticum cytadherence and virulence. Infect Immun70:6839–6845[CrossRef]
    [Google Scholar]
  29. Pitcher D. G, Windsor D, Windsor H, Bradbury J. M, Yavari C, Jensen J. S, Ling C, Webster D. 2005; Mycoplasma amphoriforme sp. nov., isolated from a patient with chronic bronchopneumonia. Int J Syst Evol Microbiol55:2589–2594[CrossRef]
    [Google Scholar]
  30. Radestock U, Bredt W. 1977; Motility of Mycoplasma pneumoniae . J Bacteriol129:1495–1501
    [Google Scholar]
  31. Razin S, Yogev D, Naot Y. 1998; Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev62:1094–1156
    [Google Scholar]
  32. Seto S, Miyata M. 2003; Attachment organelle formation represented by localization of cytadherence proteins and formation of the electron-dense core in wild-type and mutant strains of Mycoplasma pneumoniae . J Bacteriol185:1082–1091[CrossRef]
    [Google Scholar]
  33. Seto S, Layh-Schmitt G, Kenri T, Miyata M. 2001; Visualization of the attachment organelle and cytadherence proteins of Mycoplasma pneumoniae by immunofluorescence microscopy. J Bacteriol183:1621–1630[CrossRef]
    [Google Scholar]
  34. Seto S, Kenri T, Tomiyama T, Miyata M. 2005a; Involvement of P1 adhesin in gliding motility of Mycoplasma pneumoniae as revealed by the inhibitory effects of antibody under optimized gliding conditions. J Bacteriol187:1875–1877[CrossRef]
    [Google Scholar]
  35. Seto S, Uenoyama A, Miyata M. 2005b; Identification of a 521-kilodalton protein (Gli521) involved in force generation or force transmission for Mycoplasma mobile gliding. J Bacteriol187:3502–3510[CrossRef]
    [Google Scholar]
  36. Simecka J. W. 2005; Immune responses following mycoplasma infection. In Mycoplasmas: Molecular Biology, Pathogenicity, and Strategies for Control pp 485–534 Edited by Blanchard A., Browning G.. Norwich, UK: Horizon Bioscience;
    [Google Scholar]
  37. Stevens M. K, Krause D. C. 1991; Localization of the Mycoplasma pneumoniae cytadherence-accessory proteins HMW1 and HMW4 in the cytoskeletonlike Triton shell. J Bacteriol173:1041–1050
    [Google Scholar]
  38. Tryon V. V, Baseman J. B. 1992; Pathogenic determinants and mechanisms. In Mycoplasmas: Molecular Biology and Pathogenesis pp 457–471 Edited by Maniloff J., McElhaney R. N., Finch L. R., Baseman J. B.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  39. Tully J. G, Rose D. L, Whitcomb R. F, Wenzel R. P. 1979; Enhanced isolation of Mycoplasma pneumoniae from throat washings with a newly-modified culture medium. J Infect Dis139:478–482[CrossRef]
    [Google Scholar]
  40. Uenoyama A, Miyata M. 2005; Identification of a 123-kilodalton protein (Gli123) involved in machinery for gliding motility of Mycoplasma mobile . J Bacteriol187:5578–5584[CrossRef]
    [Google Scholar]
  41. Waites K. B, Talkington D. F. 2004; Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev17:697–728[CrossRef]
    [Google Scholar]
  42. Webster D, Windsor H, Ling C, Windsor D, Pitcher D. 2003; Chronic bronchitis in immunocompromised patients; association with a novel Mycoplasma species. Eur J Clin Microbiol Infect Dis22:530–534[CrossRef]
    [Google Scholar]
  43. Willby M. J, Krause D. C. 2002; Characterization of a Mycoplasma pneumoniae hmw3 mutant: implications for attachment organelle assembly. J Bacteriol184:3061–3068[CrossRef]
    [Google Scholar]
  44. Yogev D, Browning G. F, Wise K. S. 2002; Genetic mechanisms of surface variation. In Molecular Biology and Pathogenicity of the Mycoplasmas pp 417–444 Edited by Razin S., Herrmann R.. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28905-0
Loading
/content/journal/micro/10.1099/mic.0.28905-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error