1887

Abstract

To identify carbon sources that trigger --acetylglucosaminidase (NAGase) formation in (anamorph ), a screening system was designed that consists of a combination of Biolog Phenotype MicroArray plates, which contain 95 different carbon sources, and specific enzyme activity measurements using a chromogenic substrate. The results revealed growth-dependent kinetics of NAGase formation and it was shown that NAGase activities were enhanced on carbon sources sharing certain structural properties, especially on -glucans (e.g. glycogen, dextrin and maltotriose) and oligosaccharides containing galactose. Enzyme activities were assessed in the wild-type and a Δ strain to investigate the influence of the two NAGases, Nag1 and Nag2, on total NAGase activity. Reduction of NAGase levels in the Δ strain in comparison to the wild-type was strongly carbon-source and growth-phase dependent, indicating the distinct physiological roles of the two proteins. The transcript abundance of and was increased on carbon sources with elevated NAGase activity, indicating transcriptional regulation of these genes. The screening method for the identification of carbon sources that induce enzymes or a gene of interest, as presented in this paper, can be adapted for other purposes if appropriate enzyme or reporter assays are available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28897-0
2006-07-01
2020-08-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/2003.html?itemId=/content/journal/micro/10.1099/mic.0.28897-0&mimeType=html&fmt=ahah

References

  1. Benítez T, Rincon A. M, Codon A. C, Limón M. C. 2004; Biocontrol mechanisms of Trichoderma strains. Int Microbiol7:249–260
    [Google Scholar]
  2. Bochner B. R. 2003; New technologies to assess genotype–phenotype relationships. Nat Rev Genet4:309–314
    [Google Scholar]
  3. Bochner B. R, Gadzinski P, Panomitros E. 2001; Phenotype MicroArrays for high-throughput phenotypic testing and assay of gene function. Genome Res11:1246–1255[CrossRef]
    [Google Scholar]
  4. Boer H, Munck N, Natunen J, Wohlfahrt G, Soderlund H, Renkonen O, Koivula A. 2004; Differential recognition of animal type β 4-galactosylated and α 3-fucosylated chito-oligosaccharides by two family 18 chitinases from Trichoderma harzianum . Glycobiology14:1303–1313[CrossRef]
    [Google Scholar]
  5. Brunner K, Peterbauer C. K, Mach R. L, Lorito M, Zeilinger S, Kubicek C. P. 2003; The Nag1 N -acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr Genet14:289–295
    [Google Scholar]
  6. Carsolio C, Gutierrez A, Jimenez B, Van Montagu M, Herrera-Estrella A. 1994; Characterization of ech-42 , a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci U S A91:10903–10907[CrossRef]
    [Google Scholar]
  7. Chet I, Benhamou N, Haran S. 1998; Mycoparasitism and lytic enzymes. In Trichoderma and Gliocladium Enzymes, Biological Control and Commercial Applications pp 153–172 Edited by Harman G. E., Kubicek C. P.. London: Taylor & Francis;
    [Google Scholar]
  8. Chomczynski P, Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem162:156–159
    [Google Scholar]
  9. De Groot P. W, Ram A. F, Klis F. M. 2005; Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol42:657–675[CrossRef]
    [Google Scholar]
  10. de la Cruz J, Hidalgo-Gallego A, Lora J. M, Pintor-Toro J. A, Llobell A, Benítez T. 1992; Isolation and characterization of three chitinases from Trichoderma harzianum . Eur J Biochem206:859–867[CrossRef]
    [Google Scholar]
  11. de las Mercedes Dana M, Limón M. C, Mejías R, Mach R. L, Pintor-Toro J. A, Kubicek C. P, Benítez T. 2001; Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum . Curr Genet38:335–342[CrossRef]
    [Google Scholar]
  12. Dodd S, Lieckfeldt E, Samuels G. J. 2003; Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride . Mycologia95:27–40[CrossRef]
    [Google Scholar]
  13. Dogra N, Breuil C. 2004; Suppressive subtractive hybridization and differential screening identified genes differentially expressed in yeast and mycelial forms of Ophiostoma piceae . FEMS Microbiol Lett238:175–181
    [Google Scholar]
  14. Donzelli B. G, Harman G. E. 2001; Interaction of ammonium, glucose, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1. Appl Environ Microbiol67:5643–5647[CrossRef]
    [Google Scholar]
  15. Draborg H, Kauppinen S, Dalboge H, Christgau S. 1995; Molecular cloning and expression in S. cerevisiae of two exochitinases from Trichoderma harzianum . Biochem Mol Biol Int36:781–791
    [Google Scholar]
  16. Druzhinina I, Schmoll M, Seiboth B, Kubicek C. P. 2006; Global carbon utilization profiles of wild type, mutant and transformant strains of Hypocrea jecorina . Appl Environ Microbiol72:2126–2133[CrossRef]
    [Google Scholar]
  17. Garcia I, Lora J. M, Llobell A, Pintor-Toro J. A, de la Cruz J, Benítez T. 1994; Cloning and characterization of a chitinase (chit42) cDNA from the mycoparasitic fungus Trichoderma harzianum . Curr Genet27:83–89[CrossRef]
    [Google Scholar]
  18. Griffiths R. I, Whiteley A. S, O'Donnell A. G, Bailey M. J. 2000; Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol66:5488–5491[CrossRef]
    [Google Scholar]
  19. Hayes C. K, Klemsdal S, Lorito M, Di Pietro A, Peterbauer C, Nakas J. P, Tronsmo A, Harman G. E. 1994; Isolation and sequence of an endochitinase-encoding gene from a cDNA library of Trichoderma harzianum . Gene138:143–148[CrossRef]
    [Google Scholar]
  20. Hoell I. A, Klemsdal S. S, Vaaje-Kolstad G, Horn S. J, Eijsink V. G. 2005; Overexpression and characterization of a novel chitinase from Trichoderma atroviride strain P1 Biochim Biophys Acta; 1748;180–190[CrossRef]
    [Google Scholar]
  21. Holker U, Hofer M, Lenz J. 2004; Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol64:175–186[CrossRef]
    [Google Scholar]
  22. Howell C. R. 2003; Mechanisms employed by Trichoderma spp. in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis87:4–10[CrossRef]
    [Google Scholar]
  23. Ilyes H, Fekete E, Karaffa L, Fekete E, Sandor E, Szentirmai A, Kubicek C. P. 2004; CreA-mediated carbon catabolite repression of β -galactosidase formation in Aspergillus nidulans is growth rate dependent. FEMS Microbiol Lett235:147–151
    [Google Scholar]
  24. Kim D. J, Baek J. M, Uribe P, Kenerley C. M, Cook D. R. 2002; Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens . Curr Genet40:374–384[CrossRef]
    [Google Scholar]
  25. Kubicek C. P, Mach R. L, Peterbauer C. K, Lorito M. 2001; Trichoderma : from genes to biocontrol. J Plant Pathol83:11–23
    [Google Scholar]
  26. Larrainzar E, O'Gara F, Morrissey J. P. 2005; Applications of autofluorescent proteins for in situ studies in microbial ecology. Annu Rev Microbiol59:257–277[CrossRef]
    [Google Scholar]
  27. Latgé J. P, Mouyna I, Tekaia F, Beauvais A, Debeaupuis J. P, Nierman W. 2005; Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus . Med Mycol43:15–22[CrossRef]
    [Google Scholar]
  28. Mach R. L, Peterbauer C. K, Payer K, Jaksits S, Woo S. L, Zeilinger S, Kullnig C. M, Lorito M, Kubicek C. P. 1999; Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol65:1858–1863
    [Google Scholar]
  29. Mahadevan P. R, Tatum E. L. 1967; Localization of structural polymers in the cell wall of Neurospora crassa . J Cell Biol35:295–302[CrossRef]
    [Google Scholar]
  30. Morgan L. W, Greene A. V, Bell-Pedersen D. 2003; Circadian and light-induced expression of luciferase in Neurospora crassa . Fungal Genet Biol38:327–332[CrossRef]
    [Google Scholar]
  31. O'Brian G. R, Fakhoury A. M, Payne G. A. 2003; Identification of genes differentially expressed during aflatoxin biosynthesis in Aspergillus flavus and Aspergillus parasiticus . Fungal Genet Biol39:118–127[CrossRef]
    [Google Scholar]
  32. Peterbauer C. K, Lorito M, Hayes C. K, Harman G. E, Kubicek C. P. 1996; Molecular cloning and expression of the nag1 gene (N -acetyl- β -d-glucosaminidase-encoding gene) from Trichoderma harzianum P1. Curr Genet30:325–331[CrossRef]
    [Google Scholar]
  33. Peterbauer C. K, Brunner K, Mach R. L, Kubicek C. P. 2002; Identification of the N -acetyl-d-glucosamine-inducible element in the promoter of the Trichoderma atroviride nag1 gene encoding N -acetyl-glucosaminidase. Mol Genet Genomics267:162–170[CrossRef]
    [Google Scholar]
  34. Ramot O, Viterbo A, Friesem D, Oppenheim A, Chet I. 2004; Regulation of two homodimer hexosaminidases in the mycoparasitic fungus Trichoderma asperellum by glucosamine. Curr Genet45:205–213[CrossRef]
    [Google Scholar]
  35. Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S. 2005; The G protein α subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol42:749–760[CrossRef]
    [Google Scholar]
  36. Sanz L, Montero M, Redondo J, Llobell A, Monte E. 2005; Expression of an α -1,3-glucanase during mycoparasitic interaction of Trichoderma asperellum . FEBS J272:493–499[CrossRef]
    [Google Scholar]
  37. Schmoll M, Zeilinger S, Mach R. L, Kubicek C. P. 2004; Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet Biol41:877–887[CrossRef]
    [Google Scholar]
  38. Schoffelmeer E. A, Klis F. M, Sietsma J. H, Cornelissen B. J. 1999; The cell wall of Fusarium oxysporum . Fungal Genet Biol27:275–282[CrossRef]
    [Google Scholar]
  39. Seidl V, Seiboth B, Karaffa L, Kubicek C. P. 2004; The fungal STRE-element-binding protein Seb1 is involved but not essential for glycerol dehydrogenase (gld1) gene expression and glycerol accumulation in Trichoderma atroviride during osmotic stress. Fungal Genet Biol41:1132–1140[CrossRef]
    [Google Scholar]
  40. Seidl V, Huemer B, Seiboth B, Kubicek C. P. 2005; A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J272:5923–5939[CrossRef]
    [Google Scholar]
  41. Tanzer M. M, Arst H. N, Skalchunes A. R, Coffin M, Darveaux B. A, Heiniger R. W, Shuster J. R. 2003; Global nutritional profiling for mutant and chemical mode-of-action analysis in filamentous fungi. Funct Integr Genomics3:160–170[CrossRef]
    [Google Scholar]
  42. te Biesebeke R, Boussier A, Punt P. J, van Biezen N, van den Hondel C. A. M. J. J. 2005a; Identification of secreted proteins of Aspergillus oryzae associated with growth on solid cereal substrates. J Biotechnol121:482–485
    [Google Scholar]
  43. te Biesebeke R, van Biezen N, de Vos W. M, van den Hondel C. A. M. J. J., Punt P. J. 2005b; Different control mechanisms regulate glucoamylase and protease gene transcription in Aspergillus oryzae in solid-state and submerged fermentation. Appl Microbiol Biotechnol67:75–82[CrossRef]
    [Google Scholar]
  44. Tomazett P. K, Cruz A. H, Bonfim S. M, Soares C. M, Pereira M. 2005; The cell wall of Paracoccidioides brasiliensis : insights from its transcriptome. Genet Mol Res4:309–325
    [Google Scholar]
  45. Viterbo A, Haran S, Friesem D, Ramot O, Chet I. 2001; Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol Lett200:169–174[CrossRef]
    [Google Scholar]
  46. Viterbo A, Montero M, Ramot O, Friesem D, Monte E, Llobell A, Chet I. 2002; Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr Genet42:114–122[CrossRef]
    [Google Scholar]
  47. Wolski E. A, Lima C, Agusti R, Daleo G. R, Andreu A. B, de Lederkremer R. M. 2005; An α -glucan elicitor from the cell wall of a biocontrol binucleate Rhizoctonia isolate. Carbohydr Res340:619–627[CrossRef]
    [Google Scholar]
  48. Yagi T, Hisada R, Shibata H. 1989; 3,4-Dinitrophenyl N -acetyl- β -d-glucosaminide, a synthetic substrate for direct spectrophotometric assay of N -acetyl- β -d-glucosaminidase or n -acetyl- β -d-hexosaminidase. Anal Biochem183:245–249[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28897-0
Loading
/content/journal/micro/10.1099/mic.0.28897-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error