1887

Abstract

To identify carbon sources that trigger --acetylglucosaminidase (NAGase) formation in (anamorph ), a screening system was designed that consists of a combination of Biolog Phenotype MicroArray plates, which contain 95 different carbon sources, and specific enzyme activity measurements using a chromogenic substrate. The results revealed growth-dependent kinetics of NAGase formation and it was shown that NAGase activities were enhanced on carbon sources sharing certain structural properties, especially on -glucans (e.g. glycogen, dextrin and maltotriose) and oligosaccharides containing galactose. Enzyme activities were assessed in the wild-type and a Δ strain to investigate the influence of the two NAGases, Nag1 and Nag2, on total NAGase activity. Reduction of NAGase levels in the Δ strain in comparison to the wild-type was strongly carbon-source and growth-phase dependent, indicating the distinct physiological roles of the two proteins. The transcript abundance of and was increased on carbon sources with elevated NAGase activity, indicating transcriptional regulation of these genes. The screening method for the identification of carbon sources that induce enzymes or a gene of interest, as presented in this paper, can be adapted for other purposes if appropriate enzyme or reporter assays are available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28897-0
2006-07-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/2003.html?itemId=/content/journal/micro/10.1099/mic.0.28897-0&mimeType=html&fmt=ahah

References

  1. Benítez, T., Rincon, A. M., Limón, M. C. & Codon, A. C. ( 2004; ). Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7, 249–260.
    [Google Scholar]
  2. Bochner, B. R. ( 2003; ). New technologies to assess genotype–phenotype relationships. Nat Rev Genet 4, 309–314.
    [Google Scholar]
  3. Bochner, B. R., Gadzinski, P. & Panomitros, E. ( 2001; ). Phenotype MicroArrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11, 1246–1255.[CrossRef]
    [Google Scholar]
  4. Boer, H., Munck, N., Natunen, J., Wohlfahrt, G., Soderlund, H., Renkonen, O. & Koivula, A. ( 2004; ). Differential recognition of animal type β4-galactosylated and α3-fucosylated chito-oligosaccharides by two family 18 chitinases from Trichoderma harzianum. Glycobiology 14, 1303–1313.[CrossRef]
    [Google Scholar]
  5. Brunner, K., Peterbauer, C. K., Mach, R. L., Lorito, M., Zeilinger, S. & Kubicek, C. P. ( 2003; ). The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr Genet 14, 289–295.
    [Google Scholar]
  6. Carsolio, C., Gutierrez, A., Jimenez, B., Van Montagu, M. & Herrera-Estrella, A. ( 1994; ). Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci U S A 91, 10903–10907.[CrossRef]
    [Google Scholar]
  7. Chet, I., Benhamou, N. & Haran, S. ( 1998; ). Mycoparasitism and lytic enzymes. In Trichoderma and Gliocladium Enzymes, Biological Control and Commercial Applications, pp. 153–172. Edited by G. E. Harman & C. P. Kubicek. London: Taylor & Francis.
  8. Chomczynski, P. & Sacchi, N. ( 1987; ). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156–159.
    [Google Scholar]
  9. De Groot, P. W., Ram, A. F. & Klis, F. M. ( 2005; ). Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42, 657–675.[CrossRef]
    [Google Scholar]
  10. de la Cruz, J., Hidalgo-Gallego, A., Lora, J. M., Benítez, T., Pintor-Toro, J. A. & Llobell, A. ( 1992; ). Isolation and characterization of three chitinases from Trichoderma harzianum. Eur J Biochem 206, 859–867.[CrossRef]
    [Google Scholar]
  11. de las Mercedes Dana, M., Limón, M. C., Mejías, R., Mach, R. L., Benítez, T., Pintor-Toro, J. A. & Kubicek, C. P. ( 2001; ). Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum. Curr Genet 38, 335–342.[CrossRef]
    [Google Scholar]
  12. Dodd, S., Lieckfeldt, E. & Samuels, G. J. ( 2003; ). Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride. Mycologia 95, 27–40.[CrossRef]
    [Google Scholar]
  13. Dogra, N. & Breuil, C. ( 2004; ). Suppressive subtractive hybridization and differential screening identified genes differentially expressed in yeast and mycelial forms of Ophiostoma piceae. FEMS Microbiol Lett 238, 175–181.
    [Google Scholar]
  14. Donzelli, B. G. & Harman, G. E. ( 2001; ). Interaction of ammonium, glucose, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1. Appl Environ Microbiol 67, 5643–5647.[CrossRef]
    [Google Scholar]
  15. Draborg, H., Kauppinen, S., Dalboge, H. & Christgau, S. ( 1995; ). Molecular cloning and expression in S. cerevisiae of two exochitinases from Trichoderma harzianum. Biochem Mol Biol Int 36, 781–791.
    [Google Scholar]
  16. Druzhinina, I., Schmoll, M., Seiboth, B. & Kubicek, C. P. ( 2006; ). Global carbon utilization profiles of wild type, mutant and transformant strains of Hypocrea jecorina. Appl Environ Microbiol 72, 2126–2133.[CrossRef]
    [Google Scholar]
  17. Garcia, I., Lora, J. M., de la Cruz, J., Benítez, T., Llobell, A. & Pintor-Toro, J. A. ( 1994; ). Cloning and characterization of a chitinase (chit42) cDNA from the mycoparasitic fungus Trichoderma harzianum. Curr Genet 27, 83–89.[CrossRef]
    [Google Scholar]
  18. Griffiths, R. I., Whiteley, A. S., O'Donnell, A. G. & Bailey, M. J. ( 2000; ). Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66, 5488–5491.[CrossRef]
    [Google Scholar]
  19. Hayes, C. K., Klemsdal, S., Lorito, M., Di Pietro, A., Peterbauer, C., Nakas, J. P., Tronsmo, A. & Harman, G. E. ( 1994; ). Isolation and sequence of an endochitinase-encoding gene from a cDNA library of Trichoderma harzianum. Gene 138, 143–148.[CrossRef]
    [Google Scholar]
  20. Hoell, I. A., Klemsdal, S. S., Vaaje-Kolstad, G., Horn, S. J. & Eijsink, V. G. ( 2005; ). Overexpression and characterization of a novel chitinase from Trichoderma atroviride strain P1. Biochim Biophys Acta 1748, 180–190.[CrossRef]
    [Google Scholar]
  21. Holker, U., Hofer, M. & Lenz, J. ( 2004; ). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64, 175–186.[CrossRef]
    [Google Scholar]
  22. Howell, C. R. ( 2003; ). Mechanisms employed by Trichoderma spp. in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87, 4–10.[CrossRef]
    [Google Scholar]
  23. Ilyes, H., Fekete, E., Karaffa, L., Fekete, E., Sandor, E., Szentirmai, A. & Kubicek, C. P. ( 2004; ). CreA-mediated carbon catabolite repression of β-galactosidase formation in Aspergillus nidulans is growth rate dependent. FEMS Microbiol Lett 235, 147–151.
    [Google Scholar]
  24. Kim, D. J., Baek, J. M., Uribe, P., Kenerley, C. M. & Cook, D. R. ( 2002; ). Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Curr Genet 40, 374–384.[CrossRef]
    [Google Scholar]
  25. Kubicek, C. P., Mach, R. L., Peterbauer, C. K. & Lorito, M. ( 2001; ). Trichoderma: from genes to biocontrol. J Plant Pathol 83, 11–23.
    [Google Scholar]
  26. Larrainzar, E., O'Gara, F. & Morrissey, J. P. ( 2005; ). Applications of autofluorescent proteins for in situ studies in microbial ecology. Annu Rev Microbiol 59, 257–277.[CrossRef]
    [Google Scholar]
  27. Latgé, J. P., Mouyna, I., Tekaia, F., Beauvais, A., Debeaupuis, J. P. & Nierman, W. ( 2005; ). Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus. Med Mycol 43, 15–22.[CrossRef]
    [Google Scholar]
  28. Mach, R. L., Peterbauer, C. K., Payer, K., Jaksits, S., Woo, S. L., Zeilinger, S., Kullnig, C. M., Lorito, M. & Kubicek, C. P. ( 1999; ). Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol 65, 1858–1863.
    [Google Scholar]
  29. Mahadevan, P. R. & Tatum, E. L. ( 1967; ). Localization of structural polymers in the cell wall of Neurospora crassa. J Cell Biol 35, 295–302.[CrossRef]
    [Google Scholar]
  30. Morgan, L. W., Greene, A. V. & Bell-Pedersen, D. ( 2003; ). Circadian and light-induced expression of luciferase in Neurospora crassa. Fungal Genet Biol 38, 327–332.[CrossRef]
    [Google Scholar]
  31. O'Brian, G. R., Fakhoury, A. M. & Payne, G. A. ( 2003; ). Identification of genes differentially expressed during aflatoxin biosynthesis in Aspergillus flavus and Aspergillus parasiticus. Fungal Genet Biol 39, 118–127.[CrossRef]
    [Google Scholar]
  32. Peterbauer, C. K., Lorito, M., Hayes, C. K., Harman, G. E. & Kubicek, C. P. ( 1996; ). Molecular cloning and expression of the nag1 gene (N-acetyl-β-d-glucosaminidase-encoding gene) from Trichoderma harzianum P1. Curr Genet 30, 325–331.[CrossRef]
    [Google Scholar]
  33. Peterbauer, C. K., Brunner, K., Mach, R. L. & Kubicek, C. P. ( 2002; ). Identification of the N-acetyl-d-glucosamine-inducible element in the promoter of the Trichoderma atroviride nag1 gene encoding N-acetyl-glucosaminidase. Mol Genet Genomics 267, 162–170.[CrossRef]
    [Google Scholar]
  34. Ramot, O., Viterbo, A., Friesem, D., Oppenheim, A. & Chet, I. ( 2004; ). Regulation of two homodimer hexosaminidases in the mycoparasitic fungus Trichoderma asperellum by glucosamine. Curr Genet 45, 205–213.[CrossRef]
    [Google Scholar]
  35. Reithner, B., Brunner, K., Schuhmacher, R., Peissl, I., Seidl, V., Krska, R. & Zeilinger, S. ( 2005; ). The G protein α subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42, 749–760.[CrossRef]
    [Google Scholar]
  36. Sanz, L., Montero, M., Redondo, J., Llobell, A. & Monte, E. ( 2005; ). Expression of an α-1,3-glucanase during mycoparasitic interaction of Trichoderma asperellum. FEBS J 272, 493–499.[CrossRef]
    [Google Scholar]
  37. Schmoll, M., Zeilinger, S., Mach, R. L. & Kubicek, C. P. ( 2004; ). Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet Biol 41, 877–887.[CrossRef]
    [Google Scholar]
  38. Schoffelmeer, E. A., Klis, F. M., Sietsma, J. H. & Cornelissen, B. J. ( 1999; ). The cell wall of Fusarium oxysporum. Fungal Genet Biol 27, 275–282.[CrossRef]
    [Google Scholar]
  39. Seidl, V., Seiboth, B., Karaffa, L. & Kubicek, C. P. ( 2004; ). The fungal STRE-element-binding protein Seb1 is involved but not essential for glycerol dehydrogenase (gld1) gene expression and glycerol accumulation in Trichoderma atroviride during osmotic stress. Fungal Genet Biol 41, 1132–1140.[CrossRef]
    [Google Scholar]
  40. Seidl, V., Huemer, B., Seiboth, B. & Kubicek, C. P. ( 2005; ). A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272, 5923–5939.[CrossRef]
    [Google Scholar]
  41. Tanzer, M. M., Arst, H. N., Skalchunes, A. R., Coffin, M., Darveaux, B. A., Heiniger, R. W. & Shuster, J. R. ( 2003; ). Global nutritional profiling for mutant and chemical mode-of-action analysis in filamentous fungi. Funct Integr Genomics 3, 160–170.[CrossRef]
    [Google Scholar]
  42. te Biesebeke, R., Boussier, A., van Biezen, N., van den Hondel, C. A. M. J. J. & Punt, P. J. ( 2005a; ). Identification of secreted proteins of Aspergillus oryzae associated with growth on solid cereal substrates. J Biotechnol 121, 482–485.
    [Google Scholar]
  43. te Biesebeke, R., van Biezen, N., de Vos, W. M., van den Hondel, C. A. M. J. J. & Punt, P. J. ( 2005b; ). Different control mechanisms regulate glucoamylase and protease gene transcription in Aspergillus oryzae in solid-state and submerged fermentation. Appl Microbiol Biotechnol 67, 75–82.[CrossRef]
    [Google Scholar]
  44. Tomazett, P. K., Cruz, A. H., Bonfim, S. M., Soares, C. M. & Pereira, M. ( 2005; ). The cell wall of Paracoccidioides brasiliensis: insights from its transcriptome. Genet Mol Res 4, 309–325.
    [Google Scholar]
  45. Viterbo, A., Haran, S., Friesem, D., Ramot, O. & Chet, I. ( 2001; ). Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol Lett 200, 169–174.[CrossRef]
    [Google Scholar]
  46. Viterbo, A., Montero, M., Ramot, O., Friesem, D., Monte, E., Llobell, A. & Chet, I. ( 2002; ). Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr Genet 42, 114–122.[CrossRef]
    [Google Scholar]
  47. Wolski, E. A., Lima, C., Agusti, R., Daleo, G. R., Andreu, A. B. & de Lederkremer, R. M. ( 2005; ). An α-glucan elicitor from the cell wall of a biocontrol binucleate Rhizoctonia isolate. Carbohydr Res 340, 619–627.[CrossRef]
    [Google Scholar]
  48. Yagi, T., Hisada, R. & Shibata, H. ( 1989; ). 3,4-Dinitrophenyl N-acetyl-β-d-glucosaminide, a synthetic substrate for direct spectrophotometric assay of N-acetyl-β-d-glucosaminidase or n-acetyl-β-d-hexosaminidase. Anal Biochem 183, 245–249.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28897-0
Loading
/content/journal/micro/10.1099/mic.0.28897-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error