1887

Abstract

In this study, was engineered to express cyst wall protein 2 (CWP2) at three different subcellular locations, intracellular, secreted or cell-surface-anchored, using nisin as an inducing agent. CWP2 expression did not appear to be detrimental to viability. No particular subcellular location of CWP2 expression offered any advantages over the others with respect to decreased toxicity towards the bacteria. All recombinant lactococci experienced a similar reduction in growth rate when induced. It was determined whether recombinant lactococcal cells engineered for cell surface expression of CWP2 were capable of inducing a CWP2-specific mucosal IgA antibody response. Recombinant lactococci were successful at inducing CWP2-specific IgA antibodies. Moreover, in a pilot challenge experiment, mice immunized with these recombinant lactococci demonstrated a significant (63 %) reduction in cyst output. Thus, it has been demonstrated that CWP2 may be expressed in and that recombinant lactococcal cells elicit -specific antibodies which reduce cyst shedding in a murine model.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28877-0
2006-07-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/1981.html?itemId=/content/journal/micro/10.1099/mic.0.28877-0&mimeType=html&fmt=ahah

References

  1. Bermudez-Humaran, L. G., Langella, P., Miyoshi, A., Gruss, A., Guerra, R. T., Montes de Oca-Luna, R. & Le Loir, Y. ( 2002; ). Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol 68, 917–922.[CrossRef]
    [Google Scholar]
  2. Bermudez-Humaran, L. G., Cortes-Perez, N. G., Le Loir, Y., Gruss, A., Rodriguez-Padilla, C., Saucedo-Cardenas, O., Langella, P. & Montes de Oca-Luna, R. ( 2003; ). Fusion to a carrier protein and a synthetic propeptide enhances E7 HPV-16 production and secretion in Lactococcus lactis. Biotechnol Prog 19, 1101–1104.[CrossRef]
    [Google Scholar]
  3. Bermudez-Humaran, L. G., Cortes-Perez, N. G., Le Loir, Y., Alcocer-Gonzalez, J. M., Tamez-Guerra, R. S., de Oca-Luna, R. M. & Langella, P. ( 2004; ). An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J Med Microbiol 53, 427–433.[CrossRef]
    [Google Scholar]
  4. Bernasconi, E., Germond, J. E., Delley, M., Fritsche, R. & Corthesy, B. ( 2002; ). Lactobacillus bulgaricus proteinase expressed in Lactococcus lactis is a powerful carrier for cell wall-associated and secreted bovine beta-lactoglobulin fusion proteins. Appl Environ Microbiol 68, 2917–2923.[CrossRef]
    [Google Scholar]
  5. Campbell, J. D. & Faubert, G. M. ( 1994a; ). Recognition of Giardia lamblia cyst-specific antigens by monoclonal antibodies. Parasite Immunol 16, 211–219.[CrossRef]
    [Google Scholar]
  6. Campbell, J. D. & Faubert, G. M. ( 1994b; ). Comparative studies on Giardia lamblia encystation in vitro and in vivo. J Parasitol 80, 36–44.[CrossRef]
    [Google Scholar]
  7. Carr, F. J., Chill, D. & Maida, N. ( 2002; ). The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28, 281–370.[CrossRef]
    [Google Scholar]
  8. Cortes-Perez, N. G., Bermudez-Humaran, L. G., Le Loir, Y., Rodriguez-Padilla, C., Gruss, A., Saucedo-Cardenas, O., Langella, P. & Montes de Oca-Luna, R. ( 2003; ). Mice immunization with live lactococci displaying a surface anchored HPV-16 E7 oncoprotein. FEMS Microbiol Lett 229, 37–42.[CrossRef]
    [Google Scholar]
  9. Cortes-Perez, N. G., Azevedo, V., Alcocer-Gonzalez, J. M., Rodriguez Padilla, C., Tamez-Guerra, R. S., Corthier, G., Gruss, A., Langella, P. & Bermudez-Humaran, L. G. ( 2005; ). Cell-surface display of E7 antigen from human papillomavirus type-16 in Lactococcus lactis and in Lactobacillus plantarum using a new cell-wall anchor from lactobacilli. J Drug Target 13, 89–98.[CrossRef]
    [Google Scholar]
  10. Daniels, C. W. & Belosevic, M. ( 1994; ). Serum antibody responses by male and female C57Bl/6 mice infected with Giardia muris. Clin Exp Immunol 97, 424–429.
    [Google Scholar]
  11. de Ruyter, P. G., Kuipers, O. P. & de Vos, W. M. ( 1996; ). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62, 3662–3667.
    [Google Scholar]
  12. de Vos, W. M. ( 1999; ). Gene expression systems for lactic acid bacteria. Curr Opin Microbiol 2, 289–295.[CrossRef]
    [Google Scholar]
  13. Dieye, Y., Usai, S., Clier, F., Gruss, A. & Piard, J. C. ( 2001; ). Design of a protein-targeting system for lactic acid bacteria. J Bacteriol 183, 4157–4166.[CrossRef]
    [Google Scholar]
  14. Eckmann, L. ( 2003; ). Mucosal defences against Giardia. Parasite Immunol 25, 259–270.[CrossRef]
    [Google Scholar]
  15. Enouf, V., Langella, P., Commissaire, J., Cohen, J. & Corthier, G. ( 2001; ). Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl Environ Microbiol 67, 1423–1428.[CrossRef]
    [Google Scholar]
  16. Erlandsen, S. L., Bemrick, W. J., Schupp, D. E., Shields, J. M., Jarroll, E. L., Sauch, J. F. & Pawley, J. B. ( 1990; ). High resolution immunogold localization of Giardia cyst wall antigens using field emission SEM with secondary and backscatter electron imaging. J Histochem Cytochem 38, 625–632.[CrossRef]
    [Google Scholar]
  17. Faubert, G. M., Lee, P. & Abdul-Wahid, A. ( 2002; ). Giardia duodenalis. In Infections of the Gastrointestinal Tract, pp. 978–1006. Edited by M. J. Blaser, P. D. Smith, J. I. Ravdin, H. B. Greenberg & R. L. Guerrant. New York: LWW Publishing.
  18. Frees, D., Varmanen, P. & Ingmer, H. ( 2001; ). Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis. Mol Microbiol 41, 93–103.[CrossRef]
    [Google Scholar]
  19. Geller, B. L., Wade, N., Gilberts, T. D., Hruby, D. E., Johanson, R. & Topisirovic, L. ( 2001; ). Surface expression of the conserved C repeat region of streptococcal M6 protein within the Pip bacteriophage receptor of Lactococcus lactis. Appl Environ Microbiol 67, 5370–5376.[CrossRef]
    [Google Scholar]
  20. Gibson, T. J. ( 1984; ). PhD thesis, University of Cambridge.
  21. Gilbert, C., Robinson, K., Le Page, R. W. & Wells, J. M. ( 2000; ). Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in Lactococcus lactis. Infect Immun 68, 3251–3260.[CrossRef]
    [Google Scholar]
  22. Heyworth, M. F. ( 1986; ). Antibody response to Giardia muris trophozoites in mouse intestine. Infect Immun 52, 568–571.
    [Google Scholar]
  23. Heyworth, M. F. ( 1992; ). Immunology of Giardia and Cryptosporidium infections. J Infect Dis 166, 465–472.[CrossRef]
    [Google Scholar]
  24. Heyworth, M. F., Carlson, J. R., Ermak, T. H. ( 1987; ). Clearance of Giardia muris infection requires helper/inducer T lymphocytes. J Exp Med 165, 1743–1748.[CrossRef]
    [Google Scholar]
  25. Hlavsa, M. C., Watson, J. C. & Beach, M. J. ( 2005; ). Giardiasis surveillance – United States, 1998–2002. Morbid Mortal Wkly Rep Surveill Summ 54, 9–16.
    [Google Scholar]
  26. Holo, H. & Nes, I. F. ( 1995; ). Transformation of Lactococcus by electroporation. Methods Mol Biol 47, 195–199.
    [Google Scholar]
  27. Kok, J., van der Vossen, J. M. & Venema, G. ( 1984; ). Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 48, 726–731.
    [Google Scholar]
  28. Langella, P., Le Loir, Y., Ehrlich, S. D. & Gruss, A. ( 1993; ). Efficient plasmid mobilization by pIP501 in Lactococcus lactis subsp. lactis. J Bacteriol 175, 5806–5813.
    [Google Scholar]
  29. Langford, T. D., Housley, M. P., Boes, M., Chen, J., Kagnoff, M. F., Gillin, F. D. & Eckmann, L. ( 2002; ). Central importance of immunoglobulin A in host defense against Giardia spp. Infect Immun 70, 11–18.[CrossRef]
    [Google Scholar]
  30. Larocque, R., Nakagaki, K., Lee, P., Abdul-Wahid, A. & Faubert, G. M. ( 2003; ). Oral immunization of BALB/c mice with Giardia duodenalis recombinant cyst wall protein inhibits shedding of cysts. Infect Immun 71, 5662–5669.[CrossRef]
    [Google Scholar]
  31. Le Loir, Y., Gruss, A., Ehrlich, S. D. & Langella, P. ( 1994; ). Direct screening of recombinants in gram-positive bacteria using the secreted staphylococcal nuclease as a reporter. J Bacteriol 176, 5135–5139.
    [Google Scholar]
  32. Le Loir, Y., Gruss, A., Ehrlich, S. D. & Langella, P. ( 1998; ). A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J Bacteriol 180, 1895–1903.
    [Google Scholar]
  33. Le Loir, Y., Nouaille, S., Commissaire, J., Bretigny, L., Gruss, A. & Langella, P. ( 2001; ). Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol 67, 4119–4127.[CrossRef]
    [Google Scholar]
  34. Lindholm, A., Smeds, A. & Palva, A. ( 2004; ). Receptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis. Appl Environ Microbiol 70, 2061–2071.[CrossRef]
    [Google Scholar]
  35. Lujan, H. D., Mowatt, M. R., Conrad, J. T., Bowers, B. & Nash, T. E. ( 1995; ). Identification of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. J Biol Chem 270, 29307–29313.[CrossRef]
    [Google Scholar]
  36. Medaglini, D., Ciabattini, A., Spinosa, M. R., Maggi, T., Marcotte, H., Oggioni, M. R. & Pozzi, G. ( 2001; ). Immunization with recombinant Streptococcus gordonii expressing tetanus toxin fragment C confers protection from lethal challenge in mice. Vaccine 19, 1931–1939.[CrossRef]
    [Google Scholar]
  37. Miyoshi, A., Poquet, I., Azevedo, V. & 7 other authors ( 2002; ). Controlled production of stable heterologous proteins in Lactococcus lactis. Appl Environ Microbiol 68, 3141–3146.[CrossRef]
    [Google Scholar]
  38. Nash, T. E., Herrington, D. A., Losonsky, G. A. & Levine, M. M. ( 1987; ). Experimental human infections with Giardia lamblia. J Infect Dis 156, 974–984.[CrossRef]
    [Google Scholar]
  39. Nilsson, D., Lauridsen, A. A., Tomoyasu, T. & Ogura, T. ( 1994; ). A Lactococcus lactis gene encodes a membrane protein with putative ATPase activity that is homologous to the essential Escherichia coli ftsH gene product. Microbiology 140, 2601–2610.[CrossRef]
    [Google Scholar]
  40. Norton, P. M., Brown, H. W. & Le Page, R. W. ( 1994; ). The immune response to Lactococcus lactis: implications for its use as a vaccine delivery vehicle. FEMS Microbiol Lett 120, 249–256.[CrossRef]
    [Google Scholar]
  41. Norton, P. M., Brown, H. W., Wells, J. M., Macpherson, A. M., Wilson, P. W. & Le Page, R. W. ( 1996; ). Factors affecting the immunogenicity of tetanus toxin fragment C expressed in Lactococcus lactis. FEMS Immunol Med Microbiol 14, 167–177.[CrossRef]
    [Google Scholar]
  42. Norton, P. M., Wells, J. M., Brown, H. W., Macpherson, A. M. & Le Page, R. W. ( 1997; ). Protection against tetanus toxin in mice nasally immunized with recombinant Lactococcus lactis expressing tetanus toxin fragment C. Vaccine 15, 616–619.[CrossRef]
    [Google Scholar]
  43. Nouaille, S., Ribeiro, L. A., Miyoshi, A., Pontes, D., Le Loir, Y., Oliveira, S. C., Langella, P. & Azevedo, V. ( 2003; ). Heterologous protein production and delivery systems for Lactococcus lactis. Genet Mol Res 2, 102–111.
    [Google Scholar]
  44. Piard, J. C., Hautefort, I., Fischetti, V. A., Ehrlich, S. D., Fons, M. & Gruss, A. ( 1997a; ). Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J Bacteriol 179, 3068–3072.
    [Google Scholar]
  45. Piard, J. C., Jimenez-Diaz, R., Fischetti, V. A., Ehrlich, S. D. & Gruss, A. ( 1997b; ). The M6 protein of Streptococcus pyogenes and its potential as a tool to anchor biologically active molecules at the surface of lactic acid bacteria. Adv Exp Med Biol 418, 545–550.
    [Google Scholar]
  46. Pontes, D. S., Dorella, F. A., Ribeiro, L. A., Miyoshi, A., Le Loir, Y., Gruss, A., Oliveira, S. C., Langella, P. & Azevedo, V. ( 2003; ). Induction of partial protection in mice after oral administration of Lactococcus lactis producing Brucella abortus L7/L12 antigen. J Drug Target 11, 489–493.[CrossRef]
    [Google Scholar]
  47. Poquet, I., Saint, V., Seznec, E., Simoes, N., Bolotin, A. & Gruss, A. ( 2000; ). HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35, 1042–1051.[CrossRef]
    [Google Scholar]
  48. Ribeiro, L. A., Azevedo, V., Le Loir, Y., Oliveira, S. C., Dieye, Y., Piard, J. C., Gruss, A. & Langella, P. ( 2002; ). Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol 68, 910–916.[CrossRef]
    [Google Scholar]
  49. Robinson, K., Chamberlain, L. M., Schofield, K. M., Wells, J. M. & Le Page, R. W. ( 1997; ). Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat Biotechnol 15, 653–657.[CrossRef]
    [Google Scholar]
  50. Robinson, K., Chamberlain, L. M., Lopez, M. C., Rush, C. M., Marcotte, H., Le Page, R. W. & Wells, J. M. ( 2004; ). Mucosal and cellular immune responses elicited by recombinant Lactococcus lactis strains expressing tetanus toxin fragment C. Infect Immun 72, 2753–2761.[CrossRef]
    [Google Scholar]
  51. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  52. Snider, D. P. & Underdown, B. J. ( 1986; ). Quantitative and temporal analyses of murine antibody response in serum and gut secretions to infection with Giardia muris. Infect Immun 52, 271–278.
    [Google Scholar]
  53. Steidler, L., Hans, W., Schotte, L., Neirynck, S., Obermeier, F., Falk, W., Fiers, W. & Remaut, E. ( 2000; ). Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289, 1352–1355.[CrossRef]
    [Google Scholar]
  54. Terzaghi, B. E. & Sandine, W. E. ( 1975; ). Improved medium for lactic streptococci and their bacteriophages. Appl Environ Microbiol 29, 807–813.
    [Google Scholar]
  55. Theisen, M., Soe, S., Brunstedt, K., Follmann, F., Bredmose, L., Israelsen, H., Madsen, S. M. & Druilhe, P. ( 2004; ). A Plasmodium falciparum GLURPMSP3 chimeric protein; expression in Lactococcus lactis, immunogenicity and induction of biologically active antibodies. Vaccine 22, 1188–1198.[CrossRef]
    [Google Scholar]
  56. Vitini, E., Alvarez, S., Medina, M., Medici, M., de Budeguer, M. V. & Perdigon, G. ( 2000; ). Gut mucosal immunostimulation by lactic acid bacteria. Biocell 24, 223–232.
    [Google Scholar]
  57. Wells, J. M., Wilson, P. W., Norton, P. M., Gasson, M. J. & Le Page, R. W. ( 1993; ). Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol Microbiol 8, 1155–1162.[CrossRef]
    [Google Scholar]
  58. Wells, J. M., Robinson, K., Chamberlain, L. M., Schofield, K. M. & Le Page, R. W. ( 1996; ). Lactic acid bacteria as vaccine delivery vehicles. Antonie van Leeuwenhoek 70, 317–330.[CrossRef]
    [Google Scholar]
  59. Wu, H. Y. & Russell, M. W. ( 1993; ). Induction of mucosal immunity by intranasal application of a streptococcal surface protein antigen with the cholera toxin B subunit. Infect Immun 61, 314–322.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28877-0
Loading
/content/journal/micro/10.1099/mic.0.28877-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error