1887

Abstract

Exopolysaccharides (EPSs) play important roles in the attachment of bacterial cells to a surface and/or in building and maintaining the three-dimensional, complex structure of bacterial biofilms. To elucidate the spatial distribution and function of the EPSs levan and alginate during biofilm formation, biofilms of strains with different EPS patterns were compared. The mucoid strain PG4180.muc, which produces levan and alginate, and its levan- and/or alginate-deficient derivatives all formed biofilms in the wells of microtitre plates and in flow chambers. Confocal laser scanning microscopy with fluorescently labelled lectins was applied to investigate the spatial distribution of levan and an additional as yet unknown EPS in flow-chamber biofilms. Concanavalin A (ConA) bound specifically to levan and accumulated in cell-depleted voids in the centres of microcolonies and in blebs. No binding of ConA was observed in biofilms of the levan-deficient mutants or in wild-type biofilms grown in the absence of sucrose as confirmed by an enzyme-linked lectin-sorbent assay using peroxidase-linked ConA. Time-course studies revealed that expression of the levan-forming enzyme, levansucrase, occurred mainly during early exponential growth of both planktonic and sessile cells. Thus, accumulation of levan in biofilm voids hints to a function as a nutrient storage source for later stages of biofilm development. The presence of a third EPS besides levan and alginate was indicated by binding of the lectin from to a fibrous structure in biofilms of all derivatives. Production of the as yet uncharacterized additional EPS might be more important for biofilm formation than the syntheses of levan and alginate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28875-0
2006-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/2909.html?itemId=/content/journal/micro/10.1099/mic.0.28875-0&mimeType=html&fmt=ahah

References

  1. Arrieta J, Hernandez L, Coego A, Suarez V, Balmori E, Menendez C, Petit-Glatron M. F, Chambert R, Selman-Housein G. 1996; Molecular characterization of the levansucrase gene from the endophytic sugarcane bacterium Acetobacter diazotrophicus SRT4. Microbiology 142:1077–1085 [CrossRef]
    [Google Scholar]
  2. Boch J, Joardar V, Gao L, Robertson T. L, Lim M, Kunkel B. N. 2002; Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana . Mol Microbiol 44:73–88 [CrossRef]
    [Google Scholar]
  3. Bogs J, Geider K. 2000; Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence. J Bacteriol 182:5351–5358 [CrossRef]
    [Google Scholar]
  4. Burne R. A, Chen Y. Y, Wexler D. L, Kuramitsu H, Bowen W. H. 1996; Cariogenicity of Streptococcus mutans strains with defects in fructan metabolism assessed in a program-fed specific-pathogen-free rat model. J Dent Res 75:1572–1577 [CrossRef]
    [Google Scholar]
  5. Christensen B. B, Haagensen J. A, Heydorn A, Molin S. 2002; Metabolic commensalism and competition in a two-species microbial consortium. Appl Environ Microbiol 68:2495–2502 [CrossRef]
    [Google Scholar]
  6. Danese P. N, Pratt L. A, Kolter R. 2000; EPS production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596 [CrossRef]
    [Google Scholar]
  7. Dedonder R. 1966; Levansucrase from Bacillus subtilis . Methods Enzymol 8:500–506
    [Google Scholar]
  8. Evans L. R, Linker A. 1973; Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa . J Bacteriol 116:915–924
    [Google Scholar]
  9. Fett W. F, Dunn M. F. 1989; EPSs produced by phytopathogenic Pseudomonas syringae pathovars in infected leaves of susceptible hosts. Plant Physiol 89:5–9 [CrossRef]
    [Google Scholar]
  10. Friedman L, Kolter R. 2004a; Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457–4465 [CrossRef]
    [Google Scholar]
  11. Hentzer M, Teitzel G. M, Balzer G. J, Heydorn A, Molin S, Givskov M, Parsek M. R. 2001; Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401 [CrossRef]
    [Google Scholar]
  12. Hettwer U, Gross M, Rudolph K. 1995; Purification and characterization of an extracellular levansucrase from Pseudomonas syringae pv. phaseolicola. J Bacteriol 177:2834–2839
    [Google Scholar]
  13. Jackson K. D, Starkey M, Kremer S, Parsek M. R, Wozniak D. J. 2004; Identification of psl, a locus encoding a potential EPS that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186:4466–4475 [CrossRef]
    [Google Scholar]
  14. Keane P. J, Kerr A, New P. B. 1970; Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust J Biol Sci 23:585–595
    [Google Scholar]
  15. Keith R. C, Keith L. M. W, Uppalapati S. R, Bender C. L, Hernández-Guzmán G. 2003; Alginate gene expression by Pseudomonas syringae pv. tomato DC3000 in host and non-host plants. Microbiology 149:1127–1138 [CrossRef]
    [Google Scholar]
  16. King E. O, Ward M. K, Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J Lan Clin Med 44:301–307
    [Google Scholar]
  17. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. 2003; Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524 [CrossRef]
    [Google Scholar]
  18. Koch B, Jensen L. E, Nybroe O. 2001; A panel of Tn 7 -based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Methods 45:187–195 [CrossRef]
    [Google Scholar]
  19. Kuehn M, Mehl M, Hausner M, Bungartz H. J, Wuertz S. 2001; Time-resolved study of biofilm architecture and transport processes using experimental and simulation techniques: the role of EPS. Water Sci Technol 43:143–150
    [Google Scholar]
  20. Lawrence J. R, Neu T. R, Swerhone G. D. W. 1998; Application of multiple parameter imaging for the quantification of algal, bacterial and exopolymer components of microbial biofilms. J Microbiol Methods 32:253–261 [CrossRef]
    [Google Scholar]
  21. Leriche V, Sibille P, Carpentier B. 2000; Use of an enzyme-linked lectinsorbent assay to monitor the shift in polysaccharide composition in bacterial biofilms. Appl Environ Microbiol 66:1851–1856 [CrossRef]
    [Google Scholar]
  22. Li H, Ullrich M. S. 2001; Characterization and mutational analysis of three allelic lsc genes encoding levansucrase in Pseudomonas syringae . J Bacteriol 183:3282–3292 [CrossRef]
    [Google Scholar]
  23. Mathee K, Ciofu O, Sternberg C. 9 other authors 1999; Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357 [CrossRef]
    [Google Scholar]
  24. Matsukawa M, Greenberg E. P. 2004; Putative EPS synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 186:4449–4456 [CrossRef]
    [Google Scholar]
  25. McKenney D, Hubner J, Muller E, Wang Y, Goldmann D. A, Pier G. B. 1998; The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immun 66:4711–4720
    [Google Scholar]
  26. Møller S, Sternberg C, Andersen J. B, Christensen B. B, Molin S. 1998; In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl Environ Microbiol 64:721–732
    [Google Scholar]
  27. Neu T. R, Lawrence J. R. 1999; Lectin-binding analysis in biofilm systems. Methods Enzymol 310:145–152
    [Google Scholar]
  28. Nivens D. E, Ohman D. E, Williams J, Franklin M. J. 2001; Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183:1047–1057 [CrossRef]
    [Google Scholar]
  29. Osman S. F, Fett W. F, Fishman M. L. 1986; EPSs of the phytopathogen Pseudomonas syringae pv. glycinea. J Bacteriol 166:66–71
    [Google Scholar]
  30. O'Toole G. A, Kolter R. 1998; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461 [CrossRef]
    [Google Scholar]
  31. Penaloza-Vazquez A, Kidambi S. P, Chakrabarty A. M, Bender C. L. 1997; Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae. J Bacteriol 179:4464–4472
    [Google Scholar]
  32. Sato S, Koga T, Inoue M. 1984; Isolation and some properties of extracellular d-glucosyltransferases and d-fructosyltransferases from Streptococcus mutans serotypes c, e, and f. Carbohydr Res 134:293–304 [CrossRef]
    [Google Scholar]
  33. Staudt C, Horn H, Hempel D. C, Neu T. R. 2003; Screening of lectins for staining lectin-specific glycoconjugates in the EPS of biofilms. In Biofilms in Medicine, Industry and Environmental Biotechnology pp  308–326 Edited by Lens P., Moran A. P., Mahony T., Stoodley P., O'Flaherty V. London: IWA Publishing;
    [Google Scholar]
  34. Strathmann M, Wingender J, Flemming H. C. 2002; Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa . J Microbiol Methods 50:237–248 [CrossRef]
    [Google Scholar]
  35. Sutherland I. 2001; Biofilm EPSs: a strong and sticky framework. Microbiology 147:3–9
    [Google Scholar]
  36. Thomas V. L, Sanford B. A, Moreno R, Ramsay M. A. 1997; Enzyme-linked lectinsorbent assay measures N -acetyl-d-glucosamine in matrix of biofilm produced by Staphylococcus epidermidis . Curr Microbiol 35:249–254 [CrossRef]
    [Google Scholar]
  37. Watnick P. I, Kolter R. 1999; Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595 [CrossRef]
    [Google Scholar]
  38. Whitchurch C. B, Tolker-Nielsen T, Ragas P. C, Mattick J. S. 2002; Extracellular DNA required for bacterial biofilm formation. Science 295:1487 [CrossRef]
    [Google Scholar]
  39. Wingender J, Neu T. R, Flemming H.-C. 1999 Microbial Extracellular Polymeric Substances Berlin: Springer;
    [Google Scholar]
  40. Wolfaardt G. M, Lawrence J. R, Korber D. R. 1999; Function of EPS. In Microbial Extracellular Polymeric Substances pp  171–200 Edited by Wingender J., Neu T. R., Flemming H.-C. Berlin: Springer;
    [Google Scholar]
  41. Wozniak D. J, Wyckoff T. J, Starkey M, Keyser R, Azadi P, O'Toole G. A, Parsek M. R. 2003; Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100:7907–7912 [CrossRef]
    [Google Scholar]
  42. Yu J, Chakrabarty A. M, Bender C. L, Peñaloza-Vázquez A. 1999; Involvement of the EPS alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol Microbiol 33:712–720 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28875-0
Loading
/content/journal/micro/10.1099/mic.0.28875-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error