1887

Abstract

Two conjugative plasmids (CPs) were isolated and characterized from the same ‘’ strain, SOG2/4. The plasmids were separated from each other and transferred into . One has a high copy number and is not stable (pSOG1) whereas the other has a low copy number and is stably maintained (pSOG2). Plasmid pSOG2 is the first CP found to have these characteristics. The genomes of both pSOG plasmids have been sequenced and were compared to each other and the available CPs. Interestingly, apart from a very well-conserved core, 70 % of the pSOG1 and pSOG2 genomes is largely different and composed of a mixture of genes that often resemble counterparts in previously described CPs. However, about 20 % of the predicted genes do not have known homologues, not even in other CPs. Unlike pSOG1, pSOG2 does not contain a gene for the highly conserved PlrA protein nor for obvious homologues of partitioning proteins. Unlike pNOB8 and pKEF9, both pSOG plasmids lack the so-called clustered regularly interspaced short palindrome repeats (CRISPRs). The sites of recombination between the two genomes can be explained by the presence of recombination motifs previously identified in other CPs. Like other CPs, the pSOG plasmids possess a gene encoding an integrase of the tyrosine recombinase family. This integrase probably mediates plasmid site-specific integration into the host chromosome at the highly conserved tRNA loci.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28861-0
2006-07-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/1951.html?itemId=/content/journal/micro/10.1099/mic.0.28861-0&mimeType=html&fmt=ahah

References

  1. Albers S.-V, Jonuscheit M, Dinkelaker S, Urich T, Kletzin A, Tampe R, Driessen A. J. M, Schleper C. 2006; Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus . Appl Environ Microbiol72:102–111[CrossRef]
    [Google Scholar]
  2. Aravalli R. N, Garrett R. A. 1997; Shuttle vectors for hyperthermophilic archaea. Extremophiles1:183–191[CrossRef]
    [Google Scholar]
  3. Aravind L, Koonin E. V. 1999; DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res27:4658–4670[CrossRef]
    [Google Scholar]
  4. Aravind L, Anantharaman V, Balaji S, Babu M. M, Iyer L. M. 2005; The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev29:231–262
    [Google Scholar]
  5. Arnold H. P, She Q, Phan H, Stedman K, Prangishvili D, Holz I, Kristjansson J. K, Garrett R, Zillig W. 1999; The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Mol Microbiol34:217–226[CrossRef]
    [Google Scholar]
  6. Bartolucci S, Rossi M, Cannio R. 2003; Characterization and functional complementation of a nonlethal deletion in the chromosome of a β -glycosidase mutant of Sulfolobus solfataricus . J Bacteriol185:3948–3957[CrossRef]
    [Google Scholar]
  7. Bell S. D, Jackson S. P. 2000; The role of transcription factor B in transcription initiation and promoter clearance in the archaeon Sulfolobus acidocaldarius . J Biol Chem275:12934–12940[CrossRef]
    [Google Scholar]
  8. Benes V, Hostomsky Z, Arnold L, Paces V. 1993; M13 and pUC vectors with new unique restriction sites for cloning. Gene130:151–152[CrossRef]
    [Google Scholar]
  9. Bignell C, Thomas C. M. 2001; The bacterial ParA-ParB partitioning proteins. J Biotechnol91:1–34[CrossRef]
    [Google Scholar]
  10. Birboim H. C, Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res7:1513–1523[CrossRef]
    [Google Scholar]
  11. Bolotin A, Quinquis B, Sorokin A, Ehrlich S. D. 2005; Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology151:2551–2561[CrossRef]
    [Google Scholar]
  12. Brugger K, Redder P, She Q, Confalonieri F, Zivanovic Y, Garrett R. A. 2002; Mobile elements in archaeal genomes. FEMS Microbiol Lett206:131–141[CrossRef]
    [Google Scholar]
  13. Campbell A. 1992; Chromosomal insertion sites for phages and plasmids. J Bacteriol174:7495–7499
    [Google Scholar]
  14. Cannio R, Contursi P, Rossi M, Bartolucci S. 1998; An autonomously replicating transforming vector for Sulfolobus solfataricus . J Bacteriol180:3237–3240
    [Google Scholar]
  15. Chen L, Brugger K, Skovgaard M.8 other authors 2005; The Genome of Sulfolobus acidocaldarius , a model organism of the Crenarchaeota. J Bacteriol187:4992–4999[CrossRef]
    [Google Scholar]
  16. Condo I, Ciammaruconi A, Benelli D, Ruggero D, Londei P. 1999; Cis-acting signals controlling translational initiation in the thermophilic archaeon Sulfolobus solfataricus . Mol Microbiol34:377–384[CrossRef]
    [Google Scholar]
  17. Crooks G. E, Hon G, Chandonia J. M, Brenner S. E. 2004; WebLogo: a sequence logo generator. Genome Res14:1188–1190[CrossRef]
    [Google Scholar]
  18. Dalgaard J. Z, Garrett R. A. 1993; Archaeal hyperthermophile genes. In The Biochemistry of Archaea (Archaebacteria) pp 535–563 Edited by Kates M., Kusher D. J., Matheson A. T.. Amsterdam: Elsevier;
    [Google Scholar]
  19. del Solar G, Giraldo R, Ruiz-Echevarria M.-J, Espinosa M, Diaz-Orejas R. 1998; Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev62:434–464
    [Google Scholar]
  20. del Solar G, Hernandez-Arriaga A. M, Gomis-Ruth F. X, Coll M, Espinosa M. 2002; A genetically economical family of plasmid-encoded transcriptional repressors involved in control of plasmid copy number. J Bacteriol184:4943–4951[CrossRef]
    [Google Scholar]
  21. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797[CrossRef]
    [Google Scholar]
  22. Elferink M. G, Schleper C, Zillig W. 1996; Transformation of the extremely thermoacidophilic archaeon Sulfolobus solfataricus via a self-spreading vector. FEMS Microbiol Lett137:31–35[CrossRef]
    [Google Scholar]
  23. Elie C, Baucher M. F, Fondrat C, Forterre P. 1997; A protein related to eucaryal and bacterial DNA-motor proteins in the hyperthermophilic archaeon Sulfolobus acidocaldarius . J Mol Evol45:107–114[CrossRef]
    [Google Scholar]
  24. Esposito D, Scocca J. 1997; The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res25:3605–3614[CrossRef]
    [Google Scholar]
  25. Francia M. V, Varsaki A, Garcillan-Barcia M. P, Latorre A, Drainas C, de la Cruz F. 2004; A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev28:79–100[CrossRef]
    [Google Scholar]
  26. Garcia-Vallve S, Guzman E, Montero M. A, Romeu A. 2003; HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res31:187–189[CrossRef]
    [Google Scholar]
  27. Gerdes K, Moller-Jensen J, Bugge Jensen R. 2000; Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol37:455–466
    [Google Scholar]
  28. Gogarten J. P, Senejani A. G, Zhaxybayeva O, Olendzenski L, Hilario E. 2002; Inteins: structure, function, and evolution. Annu Rev Microbiol56:263–287[CrossRef]
    [Google Scholar]
  29. Gomis-Ruth F. X, Sola M, Acebo P.7 other authors 1998; The structure of plasmid-encoded transcriptional repressor CopG unliganded and bound to its operator. EMBO J17:7404–7415[CrossRef]
    [Google Scholar]
  30. Grahn A. M, Haase J, Bamford D. H, Lanka E. 2000; Components of the RP4 conjugative transfer apparatus form an envelope structure bridging inner and outer membranes of donor cells: implications for related macromolecule transport systems. J Bacteriol182:1564–1574[CrossRef]
    [Google Scholar]
  31. Greve B, Jensen G. B, Zillig W, Garrett R, Brügger K. 2004; Genomic comparison of archaeal plasmids from Sulfolobus . Archaea1:231–239[CrossRef]
    [Google Scholar]
  32. Grohmann E, Muth G, Espinosa M. 2003; Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev67:277–301[CrossRef]
    [Google Scholar]
  33. Groth A. C, Calos M. P. 2004; Phage integrases: biology and applications. J Mol Biol335:667–678[CrossRef]
    [Google Scholar]
  34. Hanai R, Liu R, Benedetti P, Caron P. R, Lynch A. S, Wang J. C. 1996; Molecular dissection of a protein SopB essential for Escherichia coli F plasmid partition. J Biol Chem271:17469–17475[CrossRef]
    [Google Scholar]
  35. Hayes F, Barilla D. 2006; The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nat Rev Micro4:133–143[CrossRef]
    [Google Scholar]
  36. Jansen R, Embden J. D. A. V, Gaastra W, Schouls L. M. 2002; Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol43:1565–1575[CrossRef]
    [Google Scholar]
  37. Jonuscheit M, Martusewitsch E, Stedman K. M, Schleper C. 2003; A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector. Mol Microbiol48:1241–1252[CrossRef]
    [Google Scholar]
  38. Kawarabayasi Y, Hino Y, Horikawa H.27 other authors 2001; Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. DNA Res8:123–140[CrossRef]
    [Google Scholar]
  39. Keeling P. J, Klenk H. P, Singh R. K, Schenk M. E, Sensen C. W, Zillig W, Doolittle W. F. 1998; Sulfolobus islandicus plasmids pRN1 and pRN2 share distant but common evolutionary ancestry. Extremophiles2:391–393[CrossRef]
    [Google Scholar]
  40. Kletzin A, Lieke A, Urich T, Charlebois R. L, Sensen C. W. 1999; Molecular analysis of pDL10 from Acidianus ambivalens reveals a family of related plasmids from extremely thermophilic and acidophilic archaea. Genetics152:1307–1314
    [Google Scholar]
  41. Kruger K, Hermann T, Armbruster V, Pfeifer F. 1998; The transcriptional activator GvpE for the halobacterial gas vesicle genes resembles a basic region leucine-zipper regulatory protein. J Mol Biol279:761–771[CrossRef]
    [Google Scholar]
  42. Kumar S, Tamura K, Nei M. 2004; mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform5:150–163[CrossRef]
    [Google Scholar]
  43. Lanka E, Wilkins B. M. 1995; DNA processing reactions in bacterial conjugation. Annu Rev Biochem64:141–169[CrossRef]
    [Google Scholar]
  44. Lee S. J, Engelmann A, Horlacher R, Qu Q, Vierke G, Hebbeln C, Thomm M, Boos W. 2003; TrmB, a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter from the hyperthermophilic archaeon Thermococcus litoralis . J Biol Chem278:983–990[CrossRef]
    [Google Scholar]
  45. Lipps G, Ibanez P, Stroessenreuther T, Hekimian K, Krauss G. 2001a; The protein ORF80 from the acidophilic and thermophilic archaeon Sulfolobus islandicus binds highly site-specifically to double-stranded DNA and represents a novel type of basic leucine zipper protein. Nucleic Acids Res29:4973–4982[CrossRef]
    [Google Scholar]
  46. Lipps G, Stegert M, Krauss G. 2001b; Thermostable and site-specific DNA binding of the gene product ORF56 from the Sulfolobus islandicus plasmid pRN1, a putative archael plasmid copy control protein. Nucleic Acids Res29:904–913[CrossRef]
    [Google Scholar]
  47. Llosa M, de la Cruz F. 2005; Bacterial conjugation: a potential tool for genomic engineering. Res Microbiol156:1–6[CrossRef]
    [Google Scholar]
  48. Llosa M, Gomis-Ruth F. X, Coll M, de la Cruz Fd F. 2002; Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol45:1–8[CrossRef]
    [Google Scholar]
  49. Llosa M, Zunzunegui S, de la Cruz F. 2003; Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci U S A100:10465–10470[CrossRef]
    [Google Scholar]
  50. Martusewitsch E, Sensen C. W, Schleper C. 2000; High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. J Bacteriol182:2574–2581[CrossRef]
    [Google Scholar]
  51. Mojica F. J, Ferrer C, Juez G, Rodriguez-Valera F. 1995; Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol17:85–93[CrossRef]
    [Google Scholar]
  52. Mojica F. J, Diez-Villasenor C, Garcia-Martinez J. C, Soria E. 2005; Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol60:174–182[CrossRef]
    [Google Scholar]
  53. Muskhelishvili G, Palm P, Zillig W. 1993; SSV1-encoded site-specific recombination system in Sulfolobus shibatae . Mol Gen Genet237:334–342
    [Google Scholar]
  54. Nei M, Kumar K. 2000; Molecular Evolution and Phylogenetics New York: Oxford University Press;
    [Google Scholar]
  55. Nünes-Duby S. E, Kwon H. J, Tirumalai R. S, Ellenberger T, Landy A. 1998; Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res26:391–406[CrossRef]
    [Google Scholar]
  56. Palm P, Schleper C, Grampp B, Yeats S, McWilliam P, Reiter W. D, Zillig W. 1991; Complete nucleotide sequence of the virus SSV1 of the archaebacterium Sulfolobus shibatae . Virology185:242–250[CrossRef]
    [Google Scholar]
  57. Pansegrau W, Lanka E, Barth P. T.7 other authors 1994; Complete nucleotide sequence of Birmingham IncP α plasmids. Compilation and comparative analysis. J Mol Biol239:623–663[CrossRef]
    [Google Scholar]
  58. Peng X, Holz I, Zillig W, Garrett R. A, She Q. 2000; Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus . J Mol Biol303:449–454[CrossRef]
    [Google Scholar]
  59. Peng X, Brugger K, Shen B, Chen L, She Q, Garrett R. A. 2003; Genus-specific protein binding to the large clusters of DNA repeats (short regularly spaced repeats) present in Sulfolobus genomes. J Bacteriol185:2410–2417[CrossRef]
    [Google Scholar]
  60. Prangishvili D, Albers S. V, Holz I.8 other authors 1998; Conjugation in Archaea: frequent occurrence of conjugative plasmids in Sulfolobus . Plasmid40:190–202[CrossRef]
    [Google Scholar]
  61. Prangishvili D, Arnold H. P, Gotz D, Ziese U, Holz I, Kristjansson J. K, Zillig W. 1999; A novel virus family, the Rudiviridae: structure, virus-host interactions and genome variability of the sulfolobus viruses SIRV1 and SIRV2. Genetics152:1387–1396
    [Google Scholar]
  62. Prangishvili D, Stedman K, Zillig W. 2001; Viruses of the extremely thermophilic archaeon Sulfolobus . Trends Microbiol9:39–43[CrossRef]
    [Google Scholar]
  63. Reilly M. S, Grogan D. W. 2001; Characterization of intragenic recombination in a hyperthermophilic archaeon via conjugational DNA exchange. J Bacteriol183:2943–2946[CrossRef]
    [Google Scholar]
  64. Reiter W. D, Palm P, Ziilig W. 1988; Analysis of transcription in the archaebacterium Sulfolobus indicates that archaebacterial promoters are homologous to eukaryotic pol II promoters. Nucleic Acids Res16:1–19[CrossRef]
    [Google Scholar]
  65. Rice G, Stedman K, Snyder J, Wiedenheft B, Willits D, Brumfield S, McDermott T, Young M. J. 2001; Viruses from extreme thermal environments. Proc Natl Acad Sci U S A98:13341–13345[CrossRef]
    [Google Scholar]
  66. Saitou N, Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425
    [Google Scholar]
  67. Sambrook J, Fritsch E. F, Maniatis T. 1989; Molecular Cloning. A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  68. Schleper C, Kubo K, Zillig W. 1992; The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc Natl Acad Sci U S A89:7645–7649[CrossRef]
    [Google Scholar]
  69. Schleper C, Holz I, Janekovic D, Murphy J, Zillig W. 1995a; A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J Bacteriol177:4417–4426
    [Google Scholar]
  70. Schroder G, Lanka E. 2003; TraG-like proteins of Type IV secretion systems: functional dissection of the multiple activities of TraG (RP4) and TrwB (R388). J Bacteriol185:4371–4381[CrossRef]
    [Google Scholar]
  71. Schroder G, Krause S, Zechner E. L, Traxler B, Yeo H.-J, Lurz R, Waksman G, Lanka E. 2002; TraG-like proteins of DNA transfer systems and of the Helicobacter pylori Type IV secretion system: inner membrane gate for exported substrates?. J Bacteriol184:2767–2779[CrossRef]
    [Google Scholar]
  72. Serre M. C, Letzelter C, Garel J. R, Duguet M. 2002; Cleavage properties of an archaeal site-specific recombinase, the SSV1 integrase. J Biol Chem277:16758–16767[CrossRef]
    [Google Scholar]
  73. She Q, Phan H, Garrett R. A, Albers S. V, Stedman K. M, Zillig W. 1998; Genetic profile of pNOB8 from Sulfolobus : the first conjugative plasmid from an archaeon. Extremophiles8:417–425
    [Google Scholar]
  74. She Q, Singh R. K, Confalonieri F.28 other authors 2001; The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A98:7835–7840[CrossRef]
    [Google Scholar]
  75. She Q, Brugger K, Chen L. 2002; Archaeal integrative genetic elements and their impact on genome evolution. Res Microbiol153:325–332[CrossRef]
    [Google Scholar]
  76. She Q, Shen B, Chen L. 2004; Archaeal integrases and mechanisms of gene capture. Biochem Soc Trans32:222–226[CrossRef]
    [Google Scholar]
  77. Soppa J. 1999; Normalized nucleotide frequencies allow the definition of archaeal promoter elements for different archaeal groups and reveal base-specific TFB contacts upstream of the TATA box. Mol Microbiol31:1589–1592[CrossRef]
    [Google Scholar]
  78. Stedman K. M, Schleper C, Rumpf E, Zillig W. 1999; Genetic requirements for the function of the archaeal virus SSV1 in Sulfolobus solfataricus : construction and testing of viral shuttle vectors. Genetics152:1397–1405
    [Google Scholar]
  79. Stedman K. M, She Q, Phan H, Holz I, Singh H, Prangishvili D, Garrett R, Zillig W. 2000; pING family of conjugative plasmids from the extremely thermophilic archaeon Sulfolobus islandicus : insights into recombination and conjugation in Crenarchaeota . J Bacteriol182:7014–7020[CrossRef]
    [Google Scholar]
  80. Thompson W, Rouchka E. C, Lawrence C. E. 2003; Gibbs Recursive Sampler: finding transcription factor binding sites. Nucleic Acids Res31:3580–3585[CrossRef]
    [Google Scholar]
  81. Tolstrup N, Sensen C. W, Garrett R. A, Clausen I. G. 2000; Two different and highly organized mechanisms of translation initiation in the archaeon Sulfolobus solfataricus . Extremophiles4:175–179[CrossRef]
    [Google Scholar]
  82. Torarinsson E, Klenk H.-P, Garrett R. A. 2005; Divergent transcriptional and translational signals in Archaea. Environ Microbiol7:47–54[CrossRef]
    [Google Scholar]
  83. Van Duyne G. D. 2002; A structural view of tyrosine recombinase site-specific recombination. In Mobile DNA II pp 93–117 Edited by Craig N. L., Craigie R., Gellert M., Lambowitz A.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  84. Wiedenheft B, Stedman K, Roberto F, Willits D, Gleske A.-K, Zoeller L, Snyder J, Douglas T, Young M. 2004; Comparative genomic analysis of hyperthermophilic archaeal fuselloviridae viruses. J Virol78:1954–1961[CrossRef]
    [Google Scholar]
  85. Williams K. P. 2002; Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res30:866–875[CrossRef]
    [Google Scholar]
  86. Worthington P, Hoang V, Perez-Pomares F, Blum P. 2003; Targeted disruption of the α -amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus . J Bacteriol185:482–488[CrossRef]
    [Google Scholar]
  87. Xiang X, Dong X, Huang L. 2003; Sulfolobus tengchongensis sp. nov., a novel thermoacidophilic archaeon isolated from a hot spring in Tengchong, China. Extremophiles7:493–498[CrossRef]
    [Google Scholar]
  88. Zatyka M, Thomas C. M. 2002; Control of genes for conjugative transfer of plasmids and other mobile elements. FEMS Microbiol Rev21:291–319
    [Google Scholar]
  89. Zhang R, Zhang C. T. 2004; Identification of replication origins in archaeal genomes based on the Z-curve method. Archaea1:335–346
    [Google Scholar]
  90. Zillig W, Stetter K. O, Wunderl S, Schulz W, Priess H, Scholz I. 1980; The Sulfolobus -“ Caldariella ” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol125:259–269[CrossRef]
    [Google Scholar]
  91. Zillig W, Kletzin A, Schleper C, Holz I, Janecovik D, Hain J, Lanzendorfer M, Kristjansson J. 1994; Screening for Sulfolobales , their plasmids and viruses in Icelandic solfataras. Syst Appl Microbiol16:609–628
    [Google Scholar]
  92. Zillig W, Arnold H. P, Holz I.7 other authors 1998; Genetic elements in the extremely thermophilic archaeon Sulfolobus . Extremophiles2:131–140[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28861-0
Loading
/content/journal/micro/10.1099/mic.0.28861-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1951 - 1968

Alignment of integrase sequences from CPs. [PDF](120 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error