1887

Abstract

Sulphate- or sulphur-reducing bacteria with known or draft genome sequences (, G20, [draft], and ) all contain or gene clusters encoding succinate : quinone oxidoreductases. or genes are missing. The presence and function of succinate dehydrogenase versus fumarate reductase was studied. (strain Essex 6) grew by fumarate respiration or by fumarate disproportionation, and contained fumarate reductase activity. lacked fumarate respiration and contained succinate dehydrogenase activity. Succinate oxidation by the menaquinone analogue 2,3-dimethyl-1,4-naphthoquinone depended on a proton potential, and the activity was lost after degradation of the proton potential. The membrane anchor SdhC contains four conserved His residues which are known as the ligands for two haem B residues. The properties are very similar to succinate dehydrogenase of the Gram-positive (menaquinone-containing) , which uses a reverse redox loop mechanism in succinate : menaquinone reduction. It is concluded that succinate dehydrogenases from menaquinone-containing bacteria generally require a proton potential to drive the endergonic succinate oxidation. Sequence comparison shows that the SdhC subunit of this type lacks a Glu residue in transmembrane helix IV, which is part of the uncoupling E-pathway in most non-electrogenic FrdABC enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28849-0
2006-08-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2443.html?itemId=/content/journal/micro/10.1099/mic.0.28849-0&mimeType=html&fmt=ahah

References

  1. Bernhard, T. & Gottschalk, G. ( 1978; ). Cell yields of Escherichia coli during anaerobic growth on fumarate and molecular hydrogen. Arch Microbiol 116, 235–238.[CrossRef]
    [Google Scholar]
  2. Berriman, M. & Rutherford, K. ( 2003; ). Viewing and annotating sequence data with Artemis. Brief Bioinform 4, 124–132.[CrossRef]
    [Google Scholar]
  3. Biel, S., Simon, J., Gross, R., Ruiz, T., Ruitenberg, M. & Kröger, A. ( 2002; ). Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes. Eur J Biochem 269, 1974–1983.[CrossRef]
    [Google Scholar]
  4. Bode, C. H., Goebell, H. & Stähler, E. ( 1968; ). Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung bei der Biuretmethode. Z Klin Chem Biochem 6, 418–422.
    [Google Scholar]
  5. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  6. Brown, M. S. & Akagi, J. M. ( 1966; ). Purification of acetokinase from Desulfovibrio desulfuricans. J Bacteriol 92, 1273–1274.
    [Google Scholar]
  7. Cecchini, G., Schröder, I., Gunsalus, R. P. & Maklashina, E. ( 2002; ). Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochim Biophys Acta 1553, 140–157.[CrossRef]
    [Google Scholar]
  8. Collins, M. D. & Widdel, F. ( 1986; ). Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 8, 8–18.[CrossRef]
    [Google Scholar]
  9. Dorn, M., Andreesen, J. R. & Gottschalk, G. ( 1978; ). Fermentation of fumarate and l-malate by Clostridium formicoaceticum. J Bacteriol 133, 26–32.
    [Google Scholar]
  10. DSM ( 1993; ). Desulfovibrio medium, No 63. In Catalogue of Strains, p. 357. Braunschweig: Deutsche Sammlung von Mikroorganismen und Zellkulturen.
  11. Engel, P., Krämer, R. & Unden, G. ( 1994; ). Transport of C4-dicarboxylates by anaerobically grown Escherichia coli: energetics and mechanism of exchange, uptake and efflux. Eur J Biochem 222, 605–614.[CrossRef]
    [Google Scholar]
  12. Felsenstein, J. ( 1989; ). phylip - Phylogeny Inference Package (Version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  13. Forward, J. A., Behrendt, M. C., Wyborn, N. R., Cross, R. & Kelly, D. J. ( 1997; ). trap transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. J Bacteriol 179, 5482–5493.
    [Google Scholar]
  14. Golby, P., Kelly, D. J., Guest, J. R. & Andrews, S. C. ( 1998; ). Transcriptional regulation and organization of the dcuA and dcuB genes, encoding homologous anaerobic C4 dicarboxylate transporters in Escherichia coli. J Bacteriol 180, 6586–6596.
    [Google Scholar]
  15. Gross, R., Simon, J., Lancaster, C. R. & Kröger, A. ( 1998; ). Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2. Mol Microbiol 30, 639–646.[CrossRef]
    [Google Scholar]
  16. Haas, A. H., Sauer, U. S., Gross, R., Simon, J., Mäntele, W. & Lancaster, C. R. ( 2005; ). FTIR difference spectra of Wolinella succinogenes quinol: fumarate reductase support a key role of Glu C180 within the ‘E-pathway hypothesis’of coupled transmembrane electron and proton transfer. Biochemistry 40, 13949–13961.
    [Google Scholar]
  17. Hägerhäll, C. ( 1997; ). Succinate : quinone oxidoreductases. Variations on a conserved theme. Biochim Biophys Acta 1320, 107–141.[CrossRef]
    [Google Scholar]
  18. Hägerhäll, C. & Hederstedt, L. ( 1996; ). A structural model for the membrane-integral domain of succinate : quinone oxidoreductases. FEBS Lett 389, 25–31.[CrossRef]
    [Google Scholar]
  19. Hägerhäll, C., Friden, H., Aasa, R. & Hederstedt, L. ( 1995; ). Transmembrane topology and axial ligands to hemes in the cytochrome b subunit of Bacillus subtilis succinate : menaquinone reductase. Biochemistry 34, 11080–11089.[CrossRef]
    [Google Scholar]
  20. He, S. H., DerVartanian, D. V. & LeGall, J. ( 1986; ). Isolation of fumarate reductase from Desulfovibrio multispirans, a sulfate reducing bacterium. Biochem Biophys Res Commun 135, 1000–1007.[CrossRef]
    [Google Scholar]
  21. Hederstedt, L. ( 2002; ). Succinate : quinone oxidoreductase in the bacteria Paracoccus denitrificans and Bacillus subtilis. Biochim Biophys Acta 1553, 74–83.[CrossRef]
    [Google Scholar]
  22. Janausch, I. G., Zientz, E., Tran, Q. H., Kröger, A. & Unden, G. ( 2002; ). C4-dicarboxylate carriers and sensors in bacteria. Biochim Biophys Acta (Rev Bioener) 1553, 39–56.[CrossRef]
    [Google Scholar]
  23. Jormakka, M., Tornroth, S., Byrne, B. & Iwata, S. ( 2002; ). Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295, 1863–1868.[CrossRef]
    [Google Scholar]
  24. Jormakka, M., Byrne, B. & Iwata, S. ( 2003; ). Protonmotive force generation by a redox loop mechanism. FEBS Lett 545, 25–30.[CrossRef]
    [Google Scholar]
  25. Kelly, D. & Thomas, G. H. ( 2001; ). The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiol Rev 25, 405–424.[CrossRef]
    [Google Scholar]
  26. Kröger, A. ( 1974; ). Electron transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri. Biochim Biophys Acta 347, 273–289.[CrossRef]
    [Google Scholar]
  27. Kröger, A., Biel, S., Simon, J., Gross, R., Unden, G. & Lancaster, C. R. D. ( 2002; ). Fumarate respiration of Wolinella succinogenes: enzymology, energetics, and coupling mechanism. Biochim Biophys Acta (Rev Bioener) 1553, 23–38.[CrossRef]
    [Google Scholar]
  28. Körtner, C., Lauterbach, F., Tripier, D., Unden, G. & Kröger, A. ( 1990; ). Wolinella succinogenes fumarate reductase contains a dihaem cytochrome b. Mol Microbiol 4, 855–860.[CrossRef]
    [Google Scholar]
  29. Lancaster, C. R. ( 2002a; ). Wolinella succinogenes quinol : fumarate reductase-2.2 Å resolution crystal structure and the E-pathway hypothesis of coupled transmembrane proton and electron transfer. Biochim Biophys Acta 1565, 215–231.[CrossRef]
    [Google Scholar]
  30. Lancaster, C. R. D. ( 2002b; ). Succinate : quinone oxidoreductases: an overview. Biochim Biophys Acta 1553, 1–6.[CrossRef]
    [Google Scholar]
  31. Lancaster, C. D. R. & Simon, J. ( 2002; ). Succinate : quinone oxidoreductases from ε-proteobacteria. Biochim Biophys Acta 1553, 84–101.[CrossRef]
    [Google Scholar]
  32. Lancaster, C. R., Kröger, A., Auer, M. & Michel, H. ( 1999; ). Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution. Nature 402, 377–385.[CrossRef]
    [Google Scholar]
  33. Lancaster, C. R., Gross, R., Haas, A., Ritter, M., Mäntele, W., Simon, J. & Kröger, A. ( 2000; ). Essential role of Glu-C66 for menaquinol oxidation indicates transmembrane electrochemical potential generation by Wolinella succinoogenes fumarate reductase. Proc Natl Acad Sci U S A 97, 13051–13056.[CrossRef]
    [Google Scholar]
  34. Lancaster, C. R. D., Sauer, U. S., Gross, R., Haas, A. H., Graf, J., Schwalbe, H., Mäntele, W., Simon, J. & Madej, M. G. ( 2005; ). Experimental support for the ‘E-pathway hypothesis' of coupled transmembrane e and H+ transfer in dihemic quinol : fumarate reductase. Proc Natl Acad Sci U S A 102, 18860–18865.[CrossRef]
    [Google Scholar]
  35. Lemma, E., Unden, G. & Kröger, A. ( 1990; ). Menaquinone is an obligatory component of the chain catalyzing succinate respiration in Bacillus subtilis. Arch Microbiol 155, 62–67.[CrossRef]
    [Google Scholar]
  36. Lemos, R. S., Gomes, C. M., LeGall, J., Xavier, A. V. & Teixeira, M. ( 2002; ). The quinol : fumarate oxidoreductase from the sulphate reducing bacterium Desulfovibrio gigas: spectroscopic and redox studies. J Bioenerg Biomembr 34, 21–30.[CrossRef]
    [Google Scholar]
  37. Lewis, A. J. & Miller, J. D. A. ( 1977; ). The tricarboxylic pathway in Desulfovibrio. Can J Microbiol 23, 916–921.[CrossRef]
    [Google Scholar]
  38. Mell, H., Bronder, M. & Kröger, A. ( 1982; ). Cell yields of Vibrio succinogenes growing with formate and fumarate as sole carbon and energy sources in chemostat cultures. Arch Microbiol 131, 224–228.[CrossRef]
    [Google Scholar]
  39. Miller, J. D. A. & Wakerley, D. S. ( 1966; ). Growth of sulphate-reducing bacteria by fumarate dismutation. J Gen Microbiol 43, 101–107.[CrossRef]
    [Google Scholar]
  40. Odom, J. M. & Peck, H. D., Jr ( 1981; ). Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 147, 161–169.
    [Google Scholar]
  41. Overbeek, R., Larsen, N., Walunas, T. & 19 other authors ( 2003; ). The ergo genome analysis and discovery system. Nucleic Acids Res 31, 164–171.[CrossRef]
    [Google Scholar]
  42. Page, R. D. ( 1996; ). treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  43. Pires, R. H., Lourenco, A. I., Morais, F., Teixeira, M., Xavier, A. V., Saraiva, L. M. & Pereira, I. A. ( 2003; ). A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta 1605, 67–82.[CrossRef]
    [Google Scholar]
  44. Pos, K. M., Dimroth, P. & Bott, M. ( 1998; ). The Escherichia coli citrate carrier CitT: a member of a novel eubacterial transporter family related to the 2-oxoglutarate/malate translocator from spinach chloroplasts. J Bacteriol 180, 4160–4165.
    [Google Scholar]
  45. Postgate, J. R. ( 1984; ). Genus Desulfovibrio. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 666–672. Edited by N. R. Krieg & S. R. Holt. Baltimore: Williams & Wilkins.
  46. Richter, H., Vlad, D. & Unden, G. ( 2001; ). Significance of pantothenate for glucose fermentation by Oenococcus oeni and for suppression of the erythritol and acetate production. Arch Microbiol 175, 26–31.[CrossRef]
    [Google Scholar]
  47. Schirawski, J. & Unden, G. ( 1998; ). Menaquinone dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential. Eur J Biochem 257, 210–215.[CrossRef]
    [Google Scholar]
  48. Schnorpfeil, M., Janausch, I. G., Biel, S., Kröger, A., Unden, G. ( 2001; ). Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase. Eur J Biochem 268, 3069–3074.[CrossRef]
    [Google Scholar]
  49. Severi, E., Randle, G., Kivlin, P., Whitfield, K., Young, R., Moxon, R., Kelly, D., Hood, D. & Thomas, G. ( 2005; ). Sialic acid transport in Haemopohilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Mol Microbiol 58, 1173–1185.[CrossRef]
    [Google Scholar]
  50. Simon, J., Gross, R., Ringel, M., Schmidt, E. & Kröger, A. ( 1998; ). Deletion and site-directed mutagenesis of the Wolinella succinogenes fumarate reductase operon. Eur J Biochem 251, 418–426.[CrossRef]
    [Google Scholar]
  51. Six, S., Andrews, S. C., Unden, G. & Guest, J. R. ( 1994; ). Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct). J Bacteriol 176, 6470–6478.
    [Google Scholar]
  52. Thomas, G. H., Southworth, T., Leon-Kempis, M. R., Leech, A. & Kelly, D. J. ( 2006; ). Novel ligands for the extracellular solute receptors of two bacterial TRAP transporters. Microbiology 152, 187–198.[CrossRef]
    [Google Scholar]
  53. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  54. Tolner, B., Ubbink-Kok, T., Poolman, B. & Konings, W. N. ( 1995; ). Charcterization of the proton/glutamate symport protein of Bacillus subtilis and its functional expression in Escherichia coli. J Bacteriol 177, 2863–2869.
    [Google Scholar]
  55. Ullmann, R., Gross, R., Simon, J., Unden, G. & Kröger, A. ( 2000; ). Transport of C4-dicarboxylates in Wolinella succinogenes. J Bacteriol 182, 5757–5764.[CrossRef]
    [Google Scholar]
  56. Unden, G. & Kleefeld, A. ( 2004; ). C4-dicarboxylate degradation in aerobic and anaerobic growth. In EcoSal - Escherichia coli and Salmonella: Cellular and Molecular Biology, chapter 3.4.5. Editor in Chief R. Curtiss, III. [Online: http://www.ecosal.org]. Washington, DC: American Society for Microbiology.
  57. Unden, G., Hackenberg, H. & Kröger, A. ( 1980; ). Isolation and functional aspects of the fumarate reductase involved in phosphorylative electron transport of Vibrio succinogenes. Biochim Biophys Acta 591, 275–288.[CrossRef]
    [Google Scholar]
  58. Zientz, E., Janausch, I. G., Six, S. & Unden, G. ( 1999; ). Function of DcuC as the C4-dicarboxylate carrier during glucose fermentation by Escherichia coli. J Bacteriol 181, 3716–3720.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28849-0
Loading
/content/journal/micro/10.1099/mic.0.28849-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error