Reduction of 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT) is dependent on ferric reductase for grown in unbuffered media Free

Abstract

The reduction of 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT) and other tetrazolium salts is widely used as an assay for bacterial, fungal and mammalian cell viability, but the genes encoding the reductase activities have not been defined. Here, it was shown that XTT and plasma membrane ferric reductase activities were 10–40-fold greater in than in . XTT reductase activity was induced fivefold in grown in low-iron conditions compared with iron-replete conditions, and for cells grown in unbuffered (pH 4.0–4.4) medium, XTT reductase activity was largely dependent on . XTT reductase activity of grown in medium buffered to pH 6.8 was independent of but, nonetheless, was upregulated in cells deprived of iron. Reduction of 2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide (MTT), a membrane-permeable tetrazolium salt, occurred at an intracellular location and was independent of . However, MTT activity was induced by iron deprivation in but not in . possessed multiple iron- and pH-regulated reductase activities capable of reducing tetrazolium salts, but, when grown in unbuffered medium, was required for XTT reductase activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28843-0
2006-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2301.html?itemId=/content/journal/micro/10.1099/mic.0.28843-0&mimeType=html&fmt=ahah

References

  1. Arnaud M. B, Costanzo M. C, Skrzypek M. S, Binkley G, Lane C, Miyasato S. R, Sherlock G. 2005; The Candida Genome Database (CGD), a community resource for Candida albicans gene and protein information. Nucleic Acids Res 33:D358–D363 [CrossRef]
    [Google Scholar]
  2. Askwith C, Eide D, Van Ho A, Bernard P. S, Li L, Davis-Kaplan S, Sipe D. M, Kaplan J. 1994; The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403–410 [CrossRef]
    [Google Scholar]
  3. Avron M, Shavit N. 1963; A sensitive and simple method for determination of ferrocyanide. Anal Biochem 6:549–554 [CrossRef]
    [Google Scholar]
  4. Bensen E. S, Martin S. J, Li M, Berman J, Davis D. A. 2004; Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 54:1335–1351 [CrossRef]
    [Google Scholar]
  5. Berridge M. V, Tan A. S. 1993; Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482 [CrossRef]
    [Google Scholar]
  6. Berridge M. V, Tan A. S. 2000; Cell-surface NAD(P)H-oxidase: relationship to trans-plasma membrane NADH-oxidoreductase and a potential source of circulating NADH-oxidase. Antioxid Redox Signal 2:277–288 [CrossRef]
    [Google Scholar]
  7. Berridge M. V, Herst P. M, Tan A. S. 2005; Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152
    [Google Scholar]
  8. Blaiseau P. L, Lesuisse E, Camadro J. M. 2001; Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. J Biol Chem 276:34221–34226 [CrossRef]
    [Google Scholar]
  9. Braun B. R, Head W. S, Wang M. X, Johnson A. D. 2000; Identification and characterization of TUP1-regulated genes in Candida albicans . Genetics 156:31–44
    [Google Scholar]
  10. Burkholder P. R. 1943; Synthesis of riboflavin by a yeast. Proc Natl Acad Sci U S A 29:166–172 [CrossRef]
    [Google Scholar]
  11. Courel M, Lallet S, Camadro J. M, Blaiseau P. L. 2005; Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1. Mol Cell Biol 25:6760–6771 [CrossRef]
    [Google Scholar]
  12. Crane F. L, Roberts H, Linnane A. W, Low H. 1982; Transmembrane ferricyanide reduction by cells of the yeast Saccharomyces cerevisiae . J Bioenerg Biomembr 14:191–205 [CrossRef]
    [Google Scholar]
  13. Crane F. L, Sun I. L, Clark M. G, Grebing C, Low H. 1985; Transplasma-membrane redox systems in growth and development. Biochim Biophys Acta 811:233–264 [CrossRef]
    [Google Scholar]
  14. Dancis A, Klausner R. D, Hinnebusch A. G, Barriocanal J. G. 1990; Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae . Mol Cell Biol 10:2294–2301
    [Google Scholar]
  15. Dancis A, Roman D. G, Anderson G. J, Hinnebusch A. G, Klausner R. D. 1992; Ferric reductase of Saccharomyces cerevisiae : molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci U S A 89:3869–3873 [CrossRef]
    [Google Scholar]
  16. Eck R, Hundt S, Hartl A, Roemer E, Kunkel W. 1999; A multicopper oxidase gene from Candida albicans : cloning, characterization and disruption. Microbiology 145:2415–2422
    [Google Scholar]
  17. Eide D, Davis-Kaplan S, Jordan I, Sipe D, Kaplan J. 1992; Regulation of iron uptake in Saccharomyces cerevisiae . The ferrireductase and Fe(II) transporter are regulated independently. J Biol Chem 267:20774–20781
    [Google Scholar]
  18. Finegold A. A, Shatwell K. P, Segal A. W, Klausner R. D, Dancis A. 1996; Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 271:31021–31024 [CrossRef]
    [Google Scholar]
  19. Fox T. D, Folley L. S, Mulero J. J. W. M. T, Thorness P. E, Hedin L. O, Costanzo M. C. 1991; Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol 194:149–165
    [Google Scholar]
  20. Georgatsou E, Alexandraki D. 1994; Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae . Mol Cell Biol 14:3065–3073
    [Google Scholar]
  21. Hassan H. M, Fridovich I. 1979; Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys 196:385–395 [CrossRef]
    [Google Scholar]
  22. Hassett R, Kosman D. J. 1995; Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae . J Biol Chem 270:128–134 [CrossRef]
    [Google Scholar]
  23. Heyn K, Tredup A, Salvenmoser S, Muller F. M. 2005; Effect of voriconazole combined with micafungin against Candida, Aspergillus , and Scedosporium spp. and Fusarium solani . Antimicrob Agents Chemother 49:5157–5159 [CrossRef]
    [Google Scholar]
  24. Ishiyama M, Shiga M, Sasamoto K, Mizoguchi M, He P. 1993; A new sulfonated tetrazolium salt that produces a highly water-soluble formazan dye. Chem Pharm Bull 41:1118–1122 [CrossRef]
    [Google Scholar]
  25. Johnsen A. R, Bendixen K, Karlson U. 2002; Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1. Appl Environ Microbiol 68:2683–2689 [CrossRef]
    [Google Scholar]
  26. Kim C, Crane F. L, Faulk W. P, Morre D. J. 2002; Purification and characterization of a doxorubicin-inhibited NADH-quinone (NADH-ferricyanide) reductase from rat liver plasma membranes. J Biol Chem 277:16441–16447 [CrossRef]
    [Google Scholar]
  27. Knight S. A. B, Lesuisse E, Stearman R, Klausner R. D, Dancis A. 2002; Reductive iron uptake by Candida albicans : role of copper, iron and the TUP1 regulator. Microbiology 148:29–40
    [Google Scholar]
  28. Knight S. A, Vilaire G, Lesuisse E, Dancis A. 2005; Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun 73:5482–5492 [CrossRef]
    [Google Scholar]
  29. Kosman D. J. 2003; Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47:1185–1197 [CrossRef]
    [Google Scholar]
  30. Kuhn D. M, Balkis M, Chandra J, Mukherjee P. K, Ghannoum M. A. 2003; Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol 41:506–508 [CrossRef]
    [Google Scholar]
  31. Lan C. Y, Rodarte G, Murillo L. A, Jones T, Davis R. W, Dungan J, Newport G, Agabian N. 2004; Regulatory networks affected by iron availability in Candida albicans . Mol Microbiol 53:1451–1469 [CrossRef]
    [Google Scholar]
  32. Lara-Ortiz T, Riveros-Rosas H, Aguirre J. 2003; Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans . Mol Microbiol 50:1241–1255 [CrossRef]
    [Google Scholar]
  33. Lesuisse E, Labbe P. 1994; Reductive iron assimilation in Saccharomyces cerevisiae. In Metal Ions in Fungi pp  149–178 Edited by Winkelmann G., Winge D. R. New York: Marcel Dekker;
    [Google Scholar]
  34. Lesuisse E, Raguzzi F, Crichton R. R. 1987; Iron uptake by the yeast Saccharomyces cerevisiae : involvement of a reduction step. J Gen Microbiol 133:3229–3236
    [Google Scholar]
  35. Liu Y, Peterson D. A, Kimura H, Schubert D. 1997; Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69:581–593
    [Google Scholar]
  36. McCluskey C, Quinn J. P, McGrath J. W. 2005; An evaluation of three new-generation tetrazolium salts for the measurement of respiratory activity in activated sludge microorganisms. Microb Ecol 49:379–387 [CrossRef]
    [Google Scholar]
  37. Meletiadis J, Mouton J. W, Meis J. F, Bouman B. A, Donnelly J. P, Verweij P. E, Network E. 2001; Colorimetric assay for antifungal susceptibility testing of Aspergillus species. J Clin Microbiol 39:3402–3408 [CrossRef]
    [Google Scholar]
  38. Morre D. J. 2004; Quinone oxidoreductases of the plasma membrane. Methods Enzymol 378:179–199
    [Google Scholar]
  39. Mosmann T. 1983; Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63 [CrossRef]
    [Google Scholar]
  40. Paull K. D, Shoemaker R. H, Boyd M. R. 10 other authors 1988; The synthesis of XTT: a new tetrazolium reagent that is bioreducible to a water-soluble formazan. J Heterocycl Chem 25:911–914 [CrossRef]
    [Google Scholar]
  41. Peskin A. V, Winterbourn C. C. 2000; A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 293:157–166 [CrossRef]
    [Google Scholar]
  42. Ramalho P. A, Paiva S, Cavaco-Paulo A, Casal M, Cardoso M. H, Ramalho M. T. 2005; Azo reductase activity of intact Saccharomyces cerevisiae cells is dependent on the Fre1p component of plasma membrane ferric reductase. Appl Environ Microbiol 71:3882–3888 [CrossRef]
    [Google Scholar]
  43. Ramanan N, Wang Y. 2000; A high-affinity iron permease essential for Candida albicans virulence. Science 288:1062–1064 [CrossRef]
    [Google Scholar]
  44. Roehm N. W, Rodgers G. H, Hatfield S. M, Glasebrook A. L. 1991; An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods 142:257–265 [CrossRef]
    [Google Scholar]
  45. Rutherford J. C, Ojeda L, Balk J, Muhlenhoff U, Lill R, Winge D. R. 2005; Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis. J Biol Chem 280:10135–10140 [CrossRef]
    [Google Scholar]
  46. Scarlett D. J, Herst P. M, Berridge M. V. 2005; Multiple proteins with single activities or a single protein with multiple activities: the conundrum of cell surface NADH oxidoreductases. Biochim Biophys Acta 1708108–119 [CrossRef]
    [Google Scholar]
  47. Scudiero D. A, Shoemaker R. H, Paull K. D, Monks A, Tierney S, Nofziger T. H, Currens M. J, Seniff D, Boyd M. R. 1988; Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–4833
    [Google Scholar]
  48. Segal A. W. 2005; How neutrophils kill microbes. Annu Rev Immunol 23:197–223 [CrossRef]
    [Google Scholar]
  49. Sikorski R. S, Boeke J. D. 1991; In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol 194:302–318
    [Google Scholar]
  50. Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, Soll D. R. 1987; “White-opaque transition”: a second high-frequency switching system in Candida albicans . J Bacteriol 169:189–197
    [Google Scholar]
  51. Stearman R, Yuan D. S, Yamaguchi-Iwai Y, Klausner R. D, Dancis A. 1996; A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271:1552–1557 [CrossRef]
    [Google Scholar]
  52. Tan A. S, Berridge M. V. 2000; Superoxide produced by activated neutrophils efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: a simple colorimetric assay for measuring respiratory burst activation and for screening anti-inflammatory agents. J Immunol Methods 238:59–68 [CrossRef]
    [Google Scholar]
  53. Tellier R, Krajden M, Grigoriew G. A, Campbell I. 1992; Innovative endpoint determination system for antifungal susceptibility testing of yeasts. Antimicrob Agents Chemother 36:1619–1625 [CrossRef]
    [Google Scholar]
  54. Vignais P. V. 2002; The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59:1428–1459 [CrossRef]
    [Google Scholar]
  55. Villalba J. M, Navarro F, Cordoba F, Serrano A, Arroyo A, Crane F. L, Navas P. 1995; Coenzyme Q reductase from liver plasma membrane: purification and role in trans-plasma-membrane electron transport. Proc Natl Acad Sci U S A 92:4887–4891 [CrossRef]
    [Google Scholar]
  56. Vistica D. T, Skehan P, Scudiero D, Monks A, Pittman A, Boyd M. R. 1991; Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. [erratum appears in Cancer Res 1991 Aug 15; 51(16):4501]. Cancer Res 51:2515–2520
    [Google Scholar]
  57. Wiederhold N. P, Kontoyiannis D. P, Prince R. A, Lewis R. E. 2005; Attenuation of the activity of caspofungin at high concentrations against Candida albicans : possible role of cell wall integrity and calcineurin pathways. Antimicrob Agents Chemother 49:5146–5148 [CrossRef]
    [Google Scholar]
  58. Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner R. D. 1996; Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J 15:3377–3384
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28843-0
Loading
/content/journal/micro/10.1099/mic.0.28843-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed