Effects of the type III secreted pseudomonal toxin ExoS in the yeast Free

Abstract

secretes a number of toxins by a type III system, and these are important in virulence. One of them, ExoS, is a bifunctional toxin, with a GTPase-activating protein domain, as well as ADP ribosyltransferase (ADPRT) activity. These two domains have numerous potential cellular targets, but the overall mechanism of ExoS action remains unclear. The effects of ExoS in a simple eukaryotic system, the yeast , using a tetracycline-regulated expression system were studied. This system allowed controlled expression of ExoS in yeast, which was not possible using a galactose-induced system. ExoS was found to be an extremely potent inhibitor of yeast growth, and to be largely dependent on the activity of its ADPRT domain. ExoS produced a dramatic alteration in actin distribution, with the appearance of large aggregates of cortical actin, and thickened disorganized cables, entirely dependent on the ADPRT domain. This phenotype is suggestive of actin stabilization, which was verified by showing that the cortical aggregates of actin induced by ExoS were resistant to treatment with latrunculin A, an agent that prevents actin polymerization. ExoS increased the numbers of mating projections produced following growth arrest with mating pheromone, and prevented subsequent DNA replication, an effect that is again dependent on the ADPRT domain. Following pheromone removal, ExoS produced altered development of the mating projections, which became elongated with a swollen bud-like tip. These results suggest alternative pathways for ExoS action in eukaryotic cells that may result from activation of small GTPases, and this yeast expression system is well suited to explore these pathways.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28831-0
2006-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2273.html?itemId=/content/journal/micro/10.1099/mic.0.28831-0&mimeType=html&fmt=ahah

References

  1. Aktories K, Schmidt G, Just I. 2000; Rho GTPases as targets of bacterial protein toxins. Biol Chem 381:421–426
    [Google Scholar]
  2. Andor A, Trulzsch K, Essler M, Roggenkamp A, Wiedemann A, Heesemann J, Aepfelbacher M. 2001; YopE of Yersinia, a GAP for Rho GTPases, selectively modulates Rac-dependent actin structures in endothelial cells. Cell Microbiol 3:301–310 [CrossRef]
    [Google Scholar]
  3. Ayscough K. R, Stryker J, Pokala N, Sanders M, Crews P, Drubin D. G. 1997; High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin A. J Cell Biol 137:399–416 [CrossRef]
    [Google Scholar]
  4. Barbieri J. T. 2000; Pseudomonas aeruginosa exoenzyme S, a bifunctional type-III secreted cytotoxin. Int J Med Microbiol 290:381–387 [CrossRef]
    [Google Scholar]
  5. Barbieri J. T, Sun J. 2004; Pseudomonas aeruginosa ExoS and ExoT. Rev Physiol Biochem Pharmacol 152:79–92
    [Google Scholar]
  6. Belli G, Gari E, Piedrafita L, Aldea M, Herrero E. 1998; An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res 26:942–947 [CrossRef]
    [Google Scholar]
  7. Belmont L. D, Drubin D. G. 1998; The yeast V159N actin mutant reveals roles for actin dynamics in vivo . J Cell Biol 142:1289–1299 [CrossRef]
    [Google Scholar]
  8. Belmont L. D, Orlova A, Drubin D. G, Egelman E. H. 1999; A change in actin conformation associated with filament instability after Pi release. Proc Natl Acad Sci U S A 96:29–34 [CrossRef]
    [Google Scholar]
  9. Bidlingmaier S, Snyder M. 2004; Regulation of polarized growth initiation and termination cycles by the polarisome and Cdc42 regulators. J Cell Biol 164:207–218 [CrossRef]
    [Google Scholar]
  10. Bucking-Throm E, Duntze W, Hartwell L. H, Manney T. R. 1973; Reversible arrest of haploid yeast cells in the initiation of DNA synthesis by a diffusible sex factor. Exp Cell Res 76:99–110 [CrossRef]
    [Google Scholar]
  11. Carlier M. F. 1990; Actin polymerization and ATP hydrolysis. Adv Biophys 26:51–73 [CrossRef]
    [Google Scholar]
  12. Chastre J, Fagon J. Y. 2002; Ventilator-associated pneumonia. Am J Respir Crit Care Med 165:867–903 [CrossRef]
    [Google Scholar]
  13. Cornelis G. R. 2000; Type III secretion: a bacterial device for close combat with cells of their eukaryotic host. Philos Trans R Soc Lond B Biol Sci 355:681–693 [CrossRef]
    [Google Scholar]
  14. Cornelis G. R. 2002; Yersinia type III secretion: send in the effectors. J Cell Biol 158:401–408 [CrossRef]
    [Google Scholar]
  15. Cornelis G. R, Van Gijsegem F. 2000; Assembly and function of type III secretory systems. Annu Rev Microbiol 54:735–774 [CrossRef]
    [Google Scholar]
  16. Finck-Barbancon V, Goranson J, Zhu L, Sawa T, Wiener-Kronish J. P, Fleiszig S. M, Wu C, Mende-Mueller L, Frank D. W. 1997; ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 25:547–557 [CrossRef]
    [Google Scholar]
  17. Foury F. 1997; Human genetic diseases: a cross-talk between man and yeast. Gene 195:1–10 [CrossRef]
    [Google Scholar]
  18. Frank D. W. 1997; The exoenzyme S regulon of Pseudomonas aeruginosa . Mol Microbiol 26:621–629 [CrossRef]
    [Google Scholar]
  19. Fraylick J. E, La Rocque J. R, Vincent T. S, Olson J. C. 2001; Independent and coordinate effects of ADP-ribosyltransferase and GTPase-activating activities of exoenzyme S on HT-29 epithelial cell function. Infect Immun 69:5318–5328 [CrossRef]
    [Google Scholar]
  20. Frithz-Lindsten E, Du Y, Rosqvist R, Forsberg A. 1997; Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol Microbiol 25:1125–1139 [CrossRef]
    [Google Scholar]
  21. Gari E, Piedrafita L, Aldea M, Herrero E. 1997; A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae . Yeast 13:837–848 [CrossRef]
    [Google Scholar]
  22. Garrity-Ryan L, Shafikhani S, Balachandran P. 8 other authors 2004; The ADP ribosyltransferase domain of Pseudomonas aeruginosa ExoT contributes to its biological activities. Infect Immun 72:546–558 [CrossRef]
    [Google Scholar]
  23. Hauser A. R, Kang P. J, Engel J. N. 1998; PepA, a secreted protein of Pseudomonas aeruginosa , is necessary for cytotoxicity and virulence. Mol Microbiol 27:807–818 [CrossRef]
    [Google Scholar]
  24. Henriksson M. L, Rosqvist R, Telepnev M, Wolf-Watz H, Hallberg B. 2000; Ras effector pathway activation by epidermal growth factor is inhibited in vivo by exoenzyme S ADP-ribosylation of Ras. Biochem J 347:217–222 [CrossRef]
    [Google Scholar]
  25. Henriksson M. L, Sundin C, Jansson A. L, Forsberg A, Palmer R. H, Hallberg B. 2002; Exoenzyme S shows selective ADP-ribosylation and GTPase-activating protein (GAP) activities towards small GTPases in vivo . Biochem J 367:617–628 [CrossRef]
    [Google Scholar]
  26. Lesser C. F, Miller S. I. 2001; Expression of microbial virulence proteins in Saccharomyces cerevisiae models mammalian infection. Embo J 20:1840–1849 [CrossRef]
    [Google Scholar]
  27. Lyczak J. B, Cannon C. L, Pier G. B. 2002; Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222 [CrossRef]
    [Google Scholar]
  28. McGuffie E. M, Frank D. W, Vincent T. S, Olson J. C. 1998; Modification of Ras in eukaryotic cells by Pseudomonas aeruginosa exoenzyme S. Infect Immun 66:2607–2613
    [Google Scholar]
  29. Mota L. J, Cornelis G. R. 2005; The bacterial injection kit: type III secretion systems. Ann Med 37:234–249 [CrossRef]
    [Google Scholar]
  30. Olson J. C, Fraylick J. E, McGuffie E. M, Dolan K. M, Yahr T. L, Frank D. W, Vincent T. S. 1999; Interruption of multiple cellular processes in HT-29 epithelial cells by Pseudomonas aeruginosa exoenzyme S. Infect Immun 67:2847–2854
    [Google Scholar]
  31. Pederson K. J, Barbieri J. T. 1998; Intracellular expression of the ADP-ribosyltransferase domain of Pseudomonas exoenzyme S is cytotoxic to eukaryotic cells. Mol Microbiol 30:751–759 [CrossRef]
    [Google Scholar]
  32. Pederson K. J, Krall R, Riese M. J, Barbieri J. T. 2002; Intracellular localization modulates targeting of ExoS, a type III cytotoxin, to eukaryotic signalling proteins. Mol Microbiol 46:1381–1390 [CrossRef]
    [Google Scholar]
  33. Pruyne D, Bretscher A. 2000; Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J Cell Sci 113:365–375
    [Google Scholar]
  34. Rabin S. D, Hauser A. R. 2003; Pseudomonas aeruginosa ExoU, a toxin transported by the type III secretion system, kills Saccharomyces cerevisiae . Infect Immun 71:4144–4150 [CrossRef]
    [Google Scholar]
  35. Richards M. J, Edwards J. R, Culver D. H, Gaynes R. P. 1999; Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit Care Med 27:887–892 [CrossRef]
    [Google Scholar]
  36. Rocha C. L, Rucks E. A, Vincent D. M, Olson J. C. 2005; Examination of the coordinate effects of Pseudomonas aeruginosa ExoS on Rac1. Infect Immun 73:5458–5467 [CrossRef]
    [Google Scholar]
  37. Roy-Burman A, Savel R. H, Racine S, Swanson B. L, Revadigar N. S, Fujimoto J, Sawa T, Frank D. W, Wiener-Kronish J. P. 2001; Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183:1767–1774 [CrossRef]
    [Google Scholar]
  38. Stevenson B. J, Ferguson B, De Virgilio C, Bi E, Pringle J. R, Ammerer G, Sprague G. F. Jr 1995; Mutation of RGA1, which encodes a putative GTPase-activating protein for the polarity-establishment protein Cdc42p, activates the pheromone-response pathway in the yeast Saccharomyces cerevisiae . Genes Dev 9:2949–2963 [CrossRef]
    [Google Scholar]
  39. Takai Y, Sasaki T, Matozaki T. 2001; Small GTP-binding proteins. Physiol Rev 81:153–208
    [Google Scholar]
  40. Von Pawel-Rammingen U, Telepnev M. V, Schmidt G, Aktories K, Wolf-Watz H, Rosqvist R. 2000; GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol 36:737–748
    [Google Scholar]
  41. Wishart J. A, Hayes A, Wardleworth L, Zhang N, Oliver S. G. 2005; Doxycycline, the drug used to control the tet-regulatable promoter system, has no effect on global gene expression in Saccharomyces cerevisiae . Yeast 22:565–569 [CrossRef]
    [Google Scholar]
  42. Yahr T. L, Goranson J, Frank D. W. 1996; Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol 22:991–1003 [CrossRef]
    [Google Scholar]
  43. Yahr T. L, Vallis A. J, Hancock M. K, Barbieri J. T, Frank D. W. 1998; ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Natl Acad Sci U S A 95:13899–13904 [CrossRef]
    [Google Scholar]
  44. Ziman M, O'Brien J. M, Ouellette L. A, Church W. R, Johnson D. I. 1991; Mutational analysis of CDC42Sc , a Saccharomyces cerevisiae gene that encodes a putative GTP-binding protein involved in the control of cell polarity. Mol Cell Biol 11:3537–3544
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28831-0
Loading
/content/journal/micro/10.1099/mic.0.28831-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed