1887

Abstract

sp. strain A4 is capable of utilizing acenaphthene as its sole carbon and energy source. To isolate the genes responsible for acenaphthene degradation, transposon mutagenesis was performed on strain A4 and four mini-Tn-inserted mutants lacking the ability to utilize acenaphthene were isolated. In three of the four mini-Tn inserted mutants, the mini-Tns were inserted into the same locus (within about 16 kb) as the genes, which had previously been identified as the genes encoding the terminal oxygenase components for the initial oxygenation of acenaphthene. The nucleotide sequence analysis of the corresponding 16.4 kb DNA fragment revealed the existence of 16 ORFs and a partial ORF. From these ORFs, the genes encoding the ferredoxin (ArhA3) and ferredoxin reductase (ArhA4) complementary to ArhA1A2 were identified. RT-PCR analysis suggested that a 13.5 kb gene cluster, consisting of 13 ORFs and including all the genes, forms an operon, although it includes several ORFs that are apparently unnecessary for acenaphthene degradation. Furthermore, using gene disruption and quantitative RT-PCR analyses, the LysR-type activator, ArhR, required for expression of the 13.5 kb gene cluster was also identified. Transcription of the gene cluster by ArhR was induced in the presence of acenaphthene (or its metabolite), and a putative binding site (T-N-A motif) for ArhR was found upstream from the transcription start point of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28825-0
2006-08-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2455.html?itemId=/content/journal/micro/10.1099/mic.0.28825-0&mimeType=html&fmt=ahah

References

  1. Adkins, A. ( 1999; ). Degradation of the phenoxy acid herbicide diclofop-methyl by Sphingomonas paucimobilis isolated from a Canadian prairie soil. J Ind Microbiol Biotechnol 23, 332–335.[CrossRef]
    [Google Scholar]
  2. Alexeyev, M. F., Shokolenko, I. N. & Croughan, T. P. ( 1995; ). New mini-Tn5 derivatives for insertion mutagenesis and genetic engineering in gram-negative bacteria. Can J Microbiol 41, 1053–1055.[CrossRef]
    [Google Scholar]
  3. Armengaud, J. & Timmis, K. N. ( 1998; ). The reductase RedA2 of the multi-component dioxin dioxygenase system of Sphingomonas sp. RW1 is related to class-I cytochrome P450-type reductases. Eur J Biochem 253, 437–444.[CrossRef]
    [Google Scholar]
  4. Armengaud, J., Happe, B. & Timmis, K. N. ( 1998; ). Genetic analysis of dioxin dioxygenase of Sphingomonas sp. strain RW1: catabolic genes dispersed on the genome. J Bacteriol 180, 3954–3966.
    [Google Scholar]
  5. Bastiaens, L., Springael, D., Wattiau, P., Harms, H., deWachter, R., Verachtert, H. & Diels, L. ( 2000; ). Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66, 1834–1843.[CrossRef]
    [Google Scholar]
  6. Brooks, C. J. W., Cole, W. J., Borthwick, J. H. & Brown, G. M. ( 1982; ). Characterization of dihydroarenediols and related compounds by gas chromatography-mass spectrometry: comparison of derivatives. J Chromatogr 239, 191–216.[CrossRef]
    [Google Scholar]
  7. Cai, M. & Xun, L. ( 2002; ). Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184, 4672–4680.[CrossRef]
    [Google Scholar]
  8. de Lorenzo, V. & Timmis, K. N. ( 1994; ). Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235, 386–405.
    [Google Scholar]
  9. Demanèche, S., Meyer, C., Micoud, J., Louwagie, M., Willison, J. C. & Jouanneau, Y. ( 2004; ). Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a Sphingomonas strain that degrades various polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70, 6714–6725.[CrossRef]
    [Google Scholar]
  10. Dennis, J. J. & Zylstra, G. J. ( 2004; ). Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4. J Mol Biol 341, 753–768.[CrossRef]
    [Google Scholar]
  11. Ferraro, D. J., Gakhar, L. & Ramaswamy, S. ( 2005; ). Rieske business: structure-function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 338, 175–190.[CrossRef]
    [Google Scholar]
  12. Fredrickson, J. K., Balkwill, D. L., Drake, G. R., Romine, M. F., Ringelberg, D. B. & White, D. C. ( 1995; ). Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl Environ Microbiol 61, 1917–1922.
    [Google Scholar]
  13. Gabriel, F. L., Giger, W., Guenther, K. & Kohler, H. P. ( 2005; ). Differential degradation of nonylphenol isomers by Sphingomonas xenophaga Bayram. Appl Environ Microbiol 71, 1123–1129.[CrossRef]
    [Google Scholar]
  14. Gruez, A., Roig-Zamboni, V., Grisel, S., Salomoni, A., Valencia, C., Campanacci, V., Tegoni, M. & Cambillau, C. ( 2004; ). Crystal structure and kinetics identify Escherichia coli YdcW gene product as a medium-chain aldehyde dehydrogenase. J Mol Biol 343, 29–41.[CrossRef]
    [Google Scholar]
  15. Habe, H., Ashikawa, Y., Saiki, Y., Yoshida, T., Nojiri, H. & Omori, T. ( 2002; ). Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil. FEMS Microbiol Lett 211, 43–49.[CrossRef]
    [Google Scholar]
  16. Hernáez, M. J., Reineke, W. & Santero, E. ( 1999; ). Genetic analysis of biodegradation of tetralin by a Sphingomonas strain. Appl Environ Microbiol 65, 1806–1810.
    [Google Scholar]
  17. Imai, R., Nagata, Y., Senoo, K., Wada, H., Fukuda, M., Takagi, M. & Yano, K. ( 1989; ). Dehydrochlorination of γ-hexachlorocyclohexane (γ-BHC) by γ-BHC-assimilating Pseudomonas paucimobilis. Agric Biol Chem 53, 2015–2017.[CrossRef]
    [Google Scholar]
  18. Khan, A. A., Wang, R. F., Cao, W. W., Franklin, W. & Cerniglia, C. E. (1996; ). Reclassification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Beijerinckia sp. strain B1, as Sphingomonas yanoikuyae by fatty acid analysis, protein pattern analysis, DNA-DNA hybridization, and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46, 466–469.[CrossRef]
    [Google Scholar]
  19. Kiyohara, H., Nagao, K., Kouno, K. & Yano, K. ( 1982; ). Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2. Appl Environ Microbiol 43, 458–461.
    [Google Scholar]
  20. Kohler, H. P. ( 1999; ). Sphingomonas herbicidovorans MH: a versatile phenoxyalkanoic acid herbicide degrader. J Ind Microbiol Biotechnol 23, 336–340.[CrossRef]
    [Google Scholar]
  21. Kohler, M., Künnifer, T., Schmid, P., Gujer, E., Crockett, R. & Wolfensberger, M. ( 2000; ). Inventory and emission factor of creosote, polycyclic aromatic hydrocabons (PAH), and phenols from railroad ties treated with creosote. Environ Sci Technol 34, 4766–4772.[CrossRef]
    [Google Scholar]
  22. Komatsu, T., Omori, T. & Kodama, T. ( 1993; ). Microbial degradation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene by a pure bacterial culture. Biosci Biotechnol Biochem 57, 864–865.[CrossRef]
    [Google Scholar]
  23. Lessner, D. J., Parales, R. E., Narayan, S. & Gibson, D. T. ( 2003; ). Expression of the nitroarene dioxygenase genes in Comamonas sp. strain JS765 and Acidovorax sp. strain JS42 is induced by multiple aromatic compounds. J Bacteriol 185, 3895–3904.[CrossRef]
    [Google Scholar]
  24. Martínez-Pérez, O., Moreno-Ruiz, E., Floriano, B. & Santero, E. ( 2004; ). Regulation of tetralin biodegradation and identification of genes essential for expression of thn operons. J Bacteriol 186, 6101–6109.[CrossRef]
    [Google Scholar]
  25. McFall, S. M., Klem, T. J., Fujita, N., Ishihama, A. & Chakrabarty, A. M. ( 1997; ). DNase I footprinting, DNA bending and in vitro transcription analyses of ClcR and CatR interactions with the clcABD promoter: evidence of a conserved transcriptional activation mechanism. Mol Microbiol 24, 965–976.[CrossRef]
    [Google Scholar]
  26. McFall, S. M., Chugani, S. A. & Chakrabarty, A. M. ( 1998; ). Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. Gene 223, 257–267.[CrossRef]
    [Google Scholar]
  27. Miyauchi, K., Lee, H. S., Fukuda, M., Takagi, M. & Nagata, Y. ( 2002; ). Cloning and characterization of linR, involved in regulation of the downstream pathway for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. Appl Environ Microbiol 68, 1803–1807.[CrossRef]
    [Google Scholar]
  28. Moreno-Ruiz, E., Hernáez, M. J., Martínez-Pérez, O. & Santero, E. ( 2003; ). Identification and functional characterization of Sphingomonas macrogolitabida strain TFA genes involved in the first two steps of the tetralin catabolic pathway. J Bacteriol 185, 2026–2030.[CrossRef]
    [Google Scholar]
  29. Mueller, J. G., Chapman, P. J., Blattmann, B. O. & Pritchard, P. H. ( 1990; ). Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56, 1079–1086.
    [Google Scholar]
  30. Pinyakong, O. ( 2003; ). Biochemical and genetic analyses of polycyclic aromatic hydrocarbons degradation in sphingomonads. PhD thesis, University of Tokyo, Tokyo.
  31. Pinyakong, O., Habe, H., Supaka, N. & 7 other authors ( 2000; ). Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett 191, 115–121.[CrossRef]
    [Google Scholar]
  32. Pinyakong, O., Habe, H. & Omori, T. ( 2003a; ). The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49, 1–19.[CrossRef]
    [Google Scholar]
  33. Pinyakong, O., Habe, H., Yoshida, T., Nojiri, H. & Omori, T. ( 2003b; ). Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem Biophys Res Commun 301, 350–357.[CrossRef]
    [Google Scholar]
  34. Pinyakong, O., Habe, H., Kouzuma, A., Nojiri, H., Yamane, H. & Omori, T. ( 2004; ). Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4. FEMS Microbiol Lett 238, 297–305.
    [Google Scholar]
  35. Record, M. T., Jr, Reznikoff, W. S., Craig, M. L., McQuade, K. L. & Schlax, P. J. ( 1996; ). Escherichia coli RNA polymerase (Eσ 70), promoters, and the kinetics of the steps of transcription initiation. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, pp. 792–820. Edited by F. C. Neidhardt & others. Washington, DC: American Society for Microbiology.
  36. Saber, D. L. & Crawford, R. L. ( 1985; ). Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Environ Microbiol 50, 1512–1518.
    [Google Scholar]
  37. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Schäfer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G. & Pühler, A. ( 1994; ). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  39. Schell, M. A. ( 1993; ). Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47, 597–626.[CrossRef]
    [Google Scholar]
  40. Selifonov, S. A., Slepen'kin, A. V., Adanin, V. M., Grechkina, G. M. & Starovoitov, I. I. ( 1993; ). Acenaphthene catabolism by strains of Alcaligenes eutrophus and Alcaligenes paradoxus. Microbiology [English translation of Mikrobiologiia] 62, 85–92.
    [Google Scholar]
  41. Selifonov, S. A., Grifoll, M., Eaton, R. W. & Chapman, P. J. ( 1996; ). Oxidation of naphthenoaromatic and methyl-substituted aromatic compounds by naphthalene 1,2-dioxygenase. Appl Envir Microbiol 62, 507–514.
    [Google Scholar]
  42. Shi, T., Fredrickson, J. K. & Balkwill, D. L. ( 2001; ). Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface. J Ind Microbiol Biotechnol 26, 283–289.[CrossRef]
    [Google Scholar]
  43. Sukchawalit, R., Vattanaviboon, P., Sallabhan, R. & Mongkolsuk, S. ( 1999; ). Construction and characterization of regulated L-arabinose-inducible broad host range expression vectors in Xanthomonas. FEMS Microbiol Lett 181, 217–223.
    [Google Scholar]
  44. Takeuchi, M., Hamana, K. & Hiraishi, A. ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51, 1405–1417.
    [Google Scholar]
  45. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  46. Tropel, D. & van der Meer, J. R. ( 2004; ). Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 68, 474–500.[CrossRef]
    [Google Scholar]
  47. White, D. C., Sutton, S. D. & Ringelberg, D. B. ( 1996; ). The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7, 301–306.[CrossRef]
    [Google Scholar]
  48. Wise, S. A., Benner, B. A., Burd, G. D., Chester, S. N., Rebbert, R. E. & Schantz, M. M. ( 1988; ). Determination of polycyclic aromatic hydrocarbons in a coal tar standard reference material. Anal Chem 60, 887–894.[CrossRef]
    [Google Scholar]
  49. Wittich, R. M., Wilkes, H., Sinnwell, V., Francke, W. & Fortnagel, P. ( 1992; ). Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol 58, 1005–1010.
    [Google Scholar]
  50. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
  51. Yoshida, T., Ayabe, Y., Yasunaga, M., Usami, Y., Habe, H., Nojiri, H. & Omori, T. ( 2003; ). Genes involved in the synthesis of the exopolysaccharide methanolan by the obligate methylotroph Methylobacillus sp. strain 12S. Microbiology 149, 431–444.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28825-0
Loading
/content/journal/micro/10.1099/mic.0.28825-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error