1887

Abstract

Dysgalacticin is a novel bacteriocin produced by subsp. strain W2580 that has a narrow spectrum of antimicrobial activity directed primarily against the principal human streptococcal pathogen . Unlike many previously described bacteriocins of Gram-positive bacteria, dysgalacticin is a heat-labile 21.5 kDa anionic protein that kills its target without inducing lysis. The N-terminal amino acid sequence of dysgalacticin [Asn-Glu-Thr-Asn-Asn-Phe-Ala-Glu-Thr-Gln-Lys-Glu-Ile-Thr-Thr-Asn-(Asn)-Glu-Ala] has no known homologue in publicly available sequence databases. The dysgalacticin structural gene, , is located on the indigenous plasmid pW2580 of strain W2580 and encodes a 220 aa preprotein which is probably exported via a Sec-dependent transport system. Natural variants containing conservative amino acid substitutions were also detected by sequence analyses of elements from strains displaying W2580-like inhibitory profiles. Production of recombinant dysgalacticin by confirmed that this protein is solely responsible for the inhibitory activity exhibited by strain W2580. A combination of secondary structure prediction and reductive alkylation was employed to demonstrate that dysgalacticin has a novel structure containing a disulphide bond essential for its biological activity. Moreover, dysgalacticin displays similarity in predicted secondary structure (but not primary amino acid sequence or inhibitory spectrum) with another plasmid-encoded streptococcal bacteriocin, streptococcin A-M57 from , indicating that dysgalacticin represents a prototype of a new class of antimicrobial proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28823-0
2006-07-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/1991.html?itemId=/content/journal/micro/10.1099/mic.0.28823-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Balakrishnan, M., Simmonds, R. S., Carne, A. & Tagg, J. R. ( 2000; ). Streptococcus mutans strain N produces a novel low molecular mass non-lantibiotic bacteriocin. FEMS Microbiol Lett 183, 165–169.[CrossRef]
    [Google Scholar]
  3. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. ( 2004; ). Improved prediction of signal peptides – SignalP 3.0. J Mol Biol 340, 783–795.[CrossRef]
    [Google Scholar]
  4. Beukes, M., Beirbaum, G., Sahl, H. G. & Hastings, J. W. ( 2000; ). Purification and partial characterization of a murein hydrolase, millericin B, produced by Streptococcus milleri NMSCC 061. Appl Environ Microbiol 66, 23–28.[CrossRef]
    [Google Scholar]
  5. Cotter, P. D., Hill, C. & Ross, R. P. ( 2005; ). Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3, 777–788.[CrossRef]
    [Google Scholar]
  6. Chatterjee, C., Paul, M., Xie, L. & van der Donk, W. A. ( 2005; ). Biosynthesis and mode of action of lantibiotics. Chem Rev 105, 633–684.[CrossRef]
    [Google Scholar]
  7. del Solar, G., Giraldo, R., Ruiz-Echevarria, M. J., Espinosa, M. & Diaz-Orejas, R. ( 1998; ). Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62, 434–464.
    [Google Scholar]
  8. Eijsink, V. G., Axelsson, L., Diep, D. B., Havarstein, L. S., Holo, H. & Nes, I. F. ( 2002; ). Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81, 639–654.[CrossRef]
    [Google Scholar]
  9. Ennahar, S., Sashihara, T., Sonomoto, K. & Ishizaki, A. ( 2000; ). Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24, 85–106.[CrossRef]
    [Google Scholar]
  10. Fimland, G., Johnsen, L., Dalhus, B. & Nissen-Meyer, J. ( 2005; ). Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J Pept Sci 11, 688–696.[CrossRef]
    [Google Scholar]
  11. Gillor, O., Kirkup, B. C. & Riley, M. A. ( 2004; ). Colicins and microcins: the next generation antimicrobials. Adv Appl Microbiol 54, 129–146.
    [Google Scholar]
  12. Hale, J. D. F., Heng, N. C. K., Jack, R. W. & Tagg, J. R. ( 2005; ). Identification of nlmTE, the locus encoding the ABC transport system required for export of nonlantibiotic mutacins in Streptococcus mutans. J Bacteriol 187, 5036–5039.[CrossRef]
    [Google Scholar]
  13. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  14. Hardie, J. M. ( 1986; ). Genus Streptococcus Rosenbach 1884, 22AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1043–1071. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  15. Heng, N. C. K., Burtenshaw, G. A., Jack, R. W. & Tagg, J. R. ( 2004; ). Sequence analysis of pDN571, a plasmid encoding novel bacteriocin production in M-type 57 Streptococcus pyogenes. Plasmid 52, 225–229.[CrossRef]
    [Google Scholar]
  16. Hubbard, M. J. & McHugh, N. J. ( 1996; ). Mitochondrial ATP synthase F1-beta-subunit is a calcium-binding protein. FEBS Lett 391, 323–329.[CrossRef]
    [Google Scholar]
  17. Jack, R. W., Carne, A., Metzger, J., Stefanovic, S., Sahl, H. G., Jung, G. & Tagg, J. ( 1994; ). Elucidation of the structure of SA-FF22, a lanthionine-containing antibacterial peptide produced by Streptococcus pyogenes strain FF22. Eur J Biochem 220, 455–462.[CrossRef]
    [Google Scholar]
  18. Jack, R. W., Tagg, J. R. & Ray, B. ( 1995; ). Bacteriocins of gram-positive bacteria. Microbiol Rev 59, 171–200.
    [Google Scholar]
  19. Jack, R. W., Wan, J., Gordon, J., Harmark, K., Davidson, B. E., Hillier, A. J., Wettenhall, R. E., Hickey, M. W. & Coventry, M. J. ( 1996; ). Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126. Appl Environ Microbiol 62, 2897–2903.
    [Google Scholar]
  20. Jack, R. W., Bierbaum, G. & Sahl, H.-G. ( 1998; ). Lantibiotics and Related Peptides. Berlin: Springer.
  21. Joerger, M. C. & Klaenhammer, T. R. ( 1986; ). Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 167, 439–446.
    [Google Scholar]
  22. Khan, S. A. ( 2005; ). Plasmid rolling-circle replication: highlights of two decades of research. Plasmid 53, 126–136.[CrossRef]
    [Google Scholar]
  23. Kirkup, B. C. & Riley, M. A. ( 2004; ). Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428, 412–414.[CrossRef]
    [Google Scholar]
  24. Kramer, M. G., Espinosa, M., Misra, T. K. & Khan, S. A. ( 1998; ). Lagging strand replication of rolling-circle plasmids: specific recognition of the ssoA-type origins in different gram-positive bacteria. Proc Natl Acad Sci U S A 95, 10505–10510.[CrossRef]
    [Google Scholar]
  25. Lai, A. C., Tran, S. & Simmonds, R. S. ( 2002; ). Functional characterization of domains found within a lytic enzyme produced by Streptococcus equi subsp. zooepidemicus. FEMS Microbiol Lett 215, 133–138.[CrossRef]
    [Google Scholar]
  26. McGuffin, L. J., Bryson, K. & Jones, D. T. ( 2000; ). The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405.[CrossRef]
    [Google Scholar]
  27. Moscoso, M., del Solar, G. & Espinosa, M. ( 1995; ). In vitro recognition of the replication origin of pLS1 and of plasmids of the pLS1 family by the RepB initiator protein. J Bacteriol 177, 7041–7049.
    [Google Scholar]
  28. Navarre, W. W. & Schneewind, O. ( 1999; ). Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63, 174–229.
    [Google Scholar]
  29. Papagianni, M. ( 2003; ). Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 21, 465–499.[CrossRef]
    [Google Scholar]
  30. Paulsen, I. T., Banerjei, L., Myers, G. S. & 29 other authors ( 2003; ). Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299, 2071–2074.[CrossRef]
    [Google Scholar]
  31. Pollastri, G., Przybylski, D., Rost, B. & Baldi, P. ( 2002; ). Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47, 228–235.[CrossRef]
    [Google Scholar]
  32. Qi, F., Chen, P. & Caufield, P. W. ( 2001; ). The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67, 15–21.[CrossRef]
    [Google Scholar]
  33. Ragland, N. & Tagg, J. ( 1990; ). Applications of bacteriocin-like inhibitory substance (BLIS) typing in a longitudinal study of the oral carriage of beta-haemolytic streptococci by a group of Dunedin schoolchildren. Zentralbl Bakteriol 274, 100–108.[CrossRef]
    [Google Scholar]
  34. Riley, M. A. & Gordon, D. M. ( 1999; ). The ecological role of bacteriocins in bacterial competition. Trends Microbiol 7, 129–133.[CrossRef]
    [Google Scholar]
  35. Riley, M. A. & Wertz, J. E. ( 2002; ). Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56, 117–137.[CrossRef]
    [Google Scholar]
  36. Ross, K. F., Ronson, C. W. & Tagg, J. R. ( 1993; ). Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl Environ Microbiol 59, 2014–2021.
    [Google Scholar]
  37. Rost, B. ( 1996; ). phd: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 266, 525–539.
    [Google Scholar]
  38. Rost, B., Yachdav, G. & Liu, J. ( 2004; ). The PredictProtein server. Nucleic Acids Res 32, W321–W326.[CrossRef]
    [Google Scholar]
  39. Sahl, H.-G. & Bierbaum, G. ( 1998; ). Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu Rev Microbiol 52, 41–79.[CrossRef]
    [Google Scholar]
  40. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Schnell, N., Entian, K. D., Schneider, U., Gotz, F., Zahner, H., Kellner, R. & Jung, G. ( 1988; ). Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333, 276–278.[CrossRef]
    [Google Scholar]
  42. Simmonds, R. S., Pearson, L., Kennedy, R. C. & Tagg, J. R. ( 1996; ). Mode of action of a lysostaphin-like bacteriolytic agent produced by Streptococcus zooepidemicus 4881. Appl Environ Microbiol 62, 4536–4541.
    [Google Scholar]
  43. Simmonds, R. S., Simpson, W. J. & Tagg, J. R. ( 1997; ). Cloning and sequence analysis of zooA, a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene 189, 255–261.[CrossRef]
    [Google Scholar]
  44. Solow, B. T. & Somkuti, G. A. ( 2000; ). Comparison of low-molecular-weight heat stress proteins encoded on plasmids in different strains of Streptococcus thermophilus. Curr Microbiol 41, 177–181.[CrossRef]
    [Google Scholar]
  45. Tagg, J. R. & Bannister, L. V. ( 1979; ). “Fingerprinting” beta-haemolytic streptococci by their production of and sensitivity to bacteriocin-like inhibitors. J Med Microbiol 12, 397–411.[CrossRef]
    [Google Scholar]
  46. Tagg, J. R. & Wannamaker, L. W. ( 1976; ). Genetic basis of streptococcin A-FF22 production. Antimicrob Agents Chemother 10, 299–306.[CrossRef]
    [Google Scholar]
  47. Tagg, J. R. & Wong, H. K. ( 1983; ). Inhibitor production by group G streptococci of human and of animal origin. J Med Microbiol 16, 409–415.[CrossRef]
    [Google Scholar]
  48. Takamatsu, D., Osaki, M. & Sekizaki, T. ( 2000; ). Sequence analysis of a small cryptic plasmid isolated from Streptococcus suis serotype 2. Curr Microbiol 40, 61–66.[CrossRef]
    [Google Scholar]
  49. Tauch, A., Bischoff, N., Puhler, A. & Kalinowski, J. ( 2004; ). Comparative genomics identified two conserved DNA modules in a corynebacterial plasmid family present in clinical isolates of the opportunistic human pathogen Corynebacterium jeikeium. Plasmid 52, 102–118.[CrossRef]
    [Google Scholar]
  50. Tjalsma, H., Antelmann, H., Jongbloed, J. D. & 11 other authors ( 2004; ). Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68, 207–233.[CrossRef]
    [Google Scholar]
  51. Turgeon, N. & Moineau, S. ( 2000; ). Isolation and characterization of a Streptococcus thermophilus plasmid closely related to the pMV158 family. Plasmid 45, 171–183.
    [Google Scholar]
  52. van Roosmalen, M. L., Geukens, N., Jongbloed, J. D., Tjalsma, H., Dubois, J. Y., Bron, S., van Dijl, J. M. & Anné, J. ( 2004; ). Type I signal peptidases of Gram-positive bacteria. Biochim Biophys Acta 1694, 279–297.[CrossRef]
    [Google Scholar]
  53. Vullo, A. & Frasconi, P. ( 2004; ). Disulfide connectivity prediction using recursive neural networks and evolutionary information. Bioinformatics 20, 653–659.[CrossRef]
    [Google Scholar]
  54. Wescombe, P. A. & Tagg, J. R. ( 2003; ). Purification and characterization of streptin, a type A1 lantibiotic produced by Streptococcus pyogenes. Appl Environ Microbiol 69, 2737–2747.[CrossRef]
    [Google Scholar]
  55. Wilson, K. H., Blitchington, R. B. & Greene, R. C. ( 1990; ). Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 28, 1942–1946.
    [Google Scholar]
  56. Wong, H. K. ( 1981; ). Inhibition of group A streptococci by bacteriocins. MSc thesis, University of Otago.
  57. Wong, H. K., Tagg, J. R. & Hynes, W. L. ( 1981; ). Bacteriocin-like inhibitors of group A streptococci produced by group F and group G streptococci. Proc Univ Otago Med Sch 59, 105–106.
    [Google Scholar]
  58. Xu, F., Pearce, L. E. & Yu, P.-L. ( 1991; ). Construction of a family of lactococcal vectors for gene cloning and translational fusions. FEMS Microbiol Lett 77, 55–60.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28823-0
Loading
/content/journal/micro/10.1099/mic.0.28823-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error